【題目】已知集合,m∈R.
(1)若m=3,求A∩B;
(2)已知命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實(shí)數(shù)m的取值范圍.
【答案】(1){x|0<x≤3}(2)(0,2)
【解析】
(1)當(dāng)時(shí),分別求得集合和集合的解集,由此求得兩個(gè)集合的交集.(2)根據(jù)(1)得到集合A一元二次不等式的解集,同時(shí)求得集合一元二次不等式的解集.由于是的必要條件,則集合是集合的子集,由此列不等式組,求得的取值范圍.
解:(1)由題意知,A={x|-1≤x≤3},B={x|m-3<x<m+3}.
當(dāng)m=3時(shí),B={x|0<x<6},∴A∩B={x|0<x≤3}.
(2)由q是p的必要條件知,AB,
結(jié)合(1)知,解得0<m<2,
故實(shí)數(shù)m的取值范圍是(0,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.
(1)求角C的值;
(2)若c=2,且△ABC的面積為,求a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且點(diǎn)P在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)曲線的極坐標(biāo)方程為.若與交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間幾何體ABCDE中,△BCD與△CDE均是邊長(zhǎng)為2的等邊三角形,△ABC是腰長(zhǎng)為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.
(1)試在平面BCD內(nèi)作一條直線,使得直線上任意一點(diǎn)F與E的連線EF均與平面ABC平行,并給出證明;
(2)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點(diǎn), 分別為, 的中點(diǎn),且, .
(1)證明: 平面;
(2)設(shè)直線與平面所成角為,當(dāng)在內(nèi)變化時(shí),求二面角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標(biāo)系中,函數(shù)與的圖象關(guān)于軸對(duì)稱.
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出三個(gè)游戲,袋子中分別裝有若干只有顏色不同的小球(大小,形狀,質(zhì)量等均一樣),從袋中無(wú)放回地取球,則其中不公平的游戲是______.
游戲1 | 游戲2 | 游戲3 | |
球數(shù) | 3個(gè)黑球和一個(gè)白球 | 一個(gè)黑球和一個(gè)白球 | 2個(gè)黑球和2個(gè)白球 |
取法 | 取1個(gè)球,再取1個(gè)球 | 取1個(gè)球 | 取1個(gè)球,再取1個(gè)球 |
勝利 規(guī)則 | 取出的兩個(gè)球同色→甲勝 | 取出的球是黑球→甲勝 | 取出的兩個(gè)球同色→甲勝 |
取出的兩個(gè)球不同色→乙勝 | 取出的球是白球→乙勝 | 取出的兩個(gè)球不同色→乙勝 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)結(jié)論:①函數(shù)與的圖象只有一個(gè)交點(diǎn);②函數(shù)與的圖象有無(wú)數(shù)個(gè)交點(diǎn);③函數(shù)與的圖象有三個(gè)交點(diǎn);④函數(shù)與的圖象只有一個(gè)交點(diǎn).則正確結(jié)論的序號(hào)為( )
A.①B.②C.③D.④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com