若f(x)對于任意實數(shù)x恒有2f(x)-f(-x)=3x+1,則f(x)=( )
∵2f(x)-f(-x)=3x+1,①
將①中x換為-x,則有
2f(-x)-f(x)=-3x+1,②
①×2+②得3f(x)=3x+3,
∴f(x)=x+1.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
建造一個容積為8
,深為2
的無蓋水池,如果池底與池壁的造價每平方米分別是120元和80元,則水池的最低造價為
元.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
某書商為提高某套叢書的銷量,準備舉辦一場展銷會.據(jù)市場調(diào)查,當每套叢書售價定為x元時,銷售量可達到15—0.1x萬套.現(xiàn)出版社為配合該書商的活動,決定進行價格改革,將每套叢書的供貨價格分成固定價格和浮動價格兩部分,其中固定價格為30元,浮動價格(單位:元)與銷售量(單位:萬套)成反比,比例系數(shù)為10.假設不計其他成本,即銷售每套叢書的利潤=售價-供貨價格.問:
(1)每套叢書售價定為100元時,書商能獲得的總利潤是多少萬元?
(2)每套叢書售價定為多少元時,單套叢書的利潤最大?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在函數(shù)y=|x|(x∈[-1,1])的圖象上有一點P(t,|t|),此函數(shù)與x軸、直線x=-1及x=t圍成圖形(如圖陰影部分)的面積為S,則S與t的函數(shù)關系圖象可表示為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
甲同學家到乙同學家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達乙家為止經(jīng)過的路程y(km)與時間x(分)的關系.試寫出y=f(x)的函數(shù)解析式.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若在曲線
上兩個不同點處的切線重合,則稱這條切線為曲線
的“自公切線”.下列方程:①
;②
;③
;④
對應的曲線中存在“自公切線”的有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
定義在R上的函數(shù)f(x)滿足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,則f(2 014)=________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當0≤x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
在
時取得最大值,在
時取得最小值,則實數(shù)
的取值范圍為( )
查看答案和解析>>