15.設(shè)函數(shù)$f(x)=ax-\frac{x}$,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0,則a+b=4.

分析 求出函數(shù)f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由已知切線的方程可得a,b的方程組,解方程即可得到a,b的值.

解答 解:函數(shù)$f(x)=ax-\frac{x}$,的導(dǎo)數(shù)為f′(x)=a+$\frac{{x}^{2}}$,
可得y=f(x)在點(diǎn)(2,f(2))處的切線斜率為a+$\frac{4}$,
切點(diǎn)為(2,2a-$\frac{2}$),
由切線方程7x-4y-12=0,可得a+$\frac{4}$=$\frac{7}{4}$,2a-$\frac{2}$=$\frac{1}{2}$,
解得a=1,b=3.
∴a+b=4.
故答案為4.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)y=|x2-4x|的單調(diào)減區(qū)間為(-∞,0),(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)曲線y=x2在點(diǎn)(2,4)處的切線與曲線$y=\frac{1}{x}$(x>0)上點(diǎn)P處的切線垂直,則P的坐標(biāo)為$(2,\;\;\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下統(tǒng)計(jì)資料:
 x(年) 2 3 4 5 6
 y(萬(wàn)元) 2.2 3.8 5.56.5  7.0
若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,且有如下參考數(shù)據(jù):$\sum_{i=1}^5{{x_i}^2}=90,\sum_{i=1}^5{{x_i}{y_i}}=112.3$,則回歸直線方程為( 。
A.y=1.23x+0.08B.y=1.25x-0.5C.y=1.28x-0.12D.y=1.24x+0.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+6x+3,(x≤0)}\\{-3x+3,(0<x<1)}\\{-{x}^{2}+4x-3,(x≥1)}\end{array}\right.$
(1)畫出函數(shù)的圖象 (2)根據(jù)圖象寫出f(x)單調(diào)區(qū)間
(3)利用單調(diào)性定義證明f(x)在(-∞,-3]上減少的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.復(fù)數(shù)2+i的實(shí)部與復(fù)數(shù)1-2i的虛部的和為( 。
A.0B.2-2iC.3-iD.1+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知R上的連續(xù)函數(shù)g(x)滿足:
①當(dāng)x>0時(shí),g'(x)>0恒成立(g'(x)為函數(shù)g(x)的導(dǎo)函數(shù));
②對(duì)任意的x∈R都有g(shù)(x)=g(-x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.
當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x.若關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,則a的取值范圍是(  )
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)$A({1,1}),B({1,-1}),C({\sqrt{2}cosθ,\sqrt{2}sinθ}),θ∈R$,O是坐標(biāo)原點(diǎn),
(1)若$|{\overrightarrow{BC}-\overrightarrow{BA}}|=\sqrt{2}$,求sin2θ的值;
(2)若實(shí)數(shù)m,n滿足$m\overrightarrow{OA}+n\overrightarrow{OB}=\overrightarrow{OC},θ∈({0,\frac{π}{2}})$,求(m+3)2+n2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}-\frac{{y_{\;}^2}}{{b_{\;}^2}}=1(a>0,b>0)$的離心率為$\sqrt{10}$,則雙曲線C的漸近線方程為(  )
A.y=±3xB.y=±2xC.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

同步練習(xí)冊(cè)答案