【題目】已知函數(shù)f(x)=.
(1) 若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;
(2) 當x∈ (m>0,n>0)時,函數(shù)g(x)=tf(x)+1(t≥0)的值域為[2-3m,2-3n],求實數(shù)t的取值范圍.
【答案】(1) k≤1;(2) (0,1).
【解析】試題分析:(1)把f(x)=代入,化簡得k≤x在[1,3]上恒成立,所以k≤1。(2)g(x)=tf(x)+1=-+t+1,又x∈ (m>0,n>0),所以g(x)在單調(diào)遞增,所以即,即m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根。由根的分布,可得,解得0<t<1。
試題解析:(1) ∵ xf(x)+=+=x,
∴ 不等式k≤xf(x)+在x∈[1,3]上恒成立,即為k≤x在[1,3]上恒成立.
∴ k≤1.
(2) ∵ g(x)=tf(x)+1=-+t+1,
若t=0,則g(x)=1,不合題意,∴ t>0.
又當t>0時,g(x)=-+t+1在上顯然是單調(diào)增函數(shù),
∴即
∴ m,n是關(guān)于x的方程tx2-3x+1-t=0的兩個不等的正根.
令h(x)=tx2-3x+1-t,則
解得0<t<1.
∴ 實數(shù)t的取值范圍是(0,1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)
一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機抽取卡片.
(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高一年級學(xué)生的智力水平,某校按1:10的比例對700名高一學(xué)生按性別分別進行“智力評分”抽樣調(diào)查,測得“智力評分”的頻數(shù)分布表如表1、表2所示.
表1:男生“智力評分”頻數(shù)分布表
智力評分/分 |
| |||||
頻數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生“智力評分”頻數(shù)分布表
智力評分/分 | ||||||
頻數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求高一年級的男生人數(shù),并完成下面男生“智力評分”的頻率分布直方圖;
(2)估計該校高一年級學(xué)生“智力評分”在內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個口袋內(nèi)有3個不同的紅球,4個不同的白球
(1)從中任取3個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記2分,取一個白球記1分,從中任取4個球,使總分不少于6分的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請寫出式子在寫計算結(jié)果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個盒子不空,共有多少種不同的方法?
(3)恰有一個盒子不放球,共有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有4個郊縣(、、、),如圖.現(xiàn)有5種顏色,問有多少種不同的著色方法,使得相鄰兩塊不同色,且每塊只涂一種顏色?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為正整數(shù)m、n的矩形劃分成若干邊長均為正整數(shù)的正方形,每個正方形的邊均平行于矩形的相應(yīng)邊,試求這些正方形邊長之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com