圓C的內(nèi)接正方形相對的兩個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,-1),B(3,5);
(I)求圓C的方程
(II)若過點(diǎn)M(-2,0)的直線與圓C有且只有一個(gè)公共點(diǎn),求直線l的方程.
考點(diǎn):直線和圓的方程的應(yīng)用
專題:直線與圓
分析:(I)求出圓心坐標(biāo)與半徑,可得圓C的方程
(II)直線與圓C有且只有一個(gè)公共點(diǎn),可得圓心到直線的距離等于半徑,由此可求直線l的方程.
解答: 解:(I)由題意,圓心C(2,2),圓的直徑為AB=
(3-1)2+(5+1)2
=2
10
,
所以圓C的方程為(x-2)2+(y-2)2=10;
(II)顯然直線l不可能垂直x軸,設(shè)直線l的方程為y=k(x+2),
因?yàn)橹本l與圓C有且只有一個(gè)公共點(diǎn),
所以圓心到直線的距離d=
|2k-2+2k|
k2+1
=
10

解得k=3或k=-
1
3
,
所以直線l的方程為3x-y+6=0或x+3y+2=0.
點(diǎn)評:本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為實(shí)數(shù),且滿足
(x-1)3+2014(x-1)=-1
(y-1)3+2014(y-1)=1
,則x+y=( 。
A、2B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
cos
x
4
,cos2
x
4
),
b
=(2sin
x
4
,2),設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所對邊的長分別為a,b,c,且f(2B-
π
3
)=
3
+1,a=3,b=3
3
,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+(y-1)2=1的圓心到直線ln:x+ny=0(n∈N*)的距離為dn,則
lim
n→∞
dn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)擲兩枚質(zhì)地均勻的骰子,則:
(I)向上的點(diǎn)數(shù)相同的概率為
 
;
(Ⅱ)向上的點(diǎn)數(shù)之和小于5的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點(diǎn)分別為A(-
2
,0)、B(
2
,0),離心率e=
2
2
.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且|PC|=(
2
-1)|PQ|.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且|MN|=
8
2
7
,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(2x)=x2+bx+c(b,c∈R).
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈(0,
1
4
]∪[4,+∞)
,恒有f(x)≥0,且f(x)在區(qū)間(4,8]上的最大值為1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線2x+(m+1)y+4=0與直線mx+3y+4=0平行,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)滿足條件x2+y2≤1的點(diǎn)(x,y)構(gòu)成的平面區(qū)域的面積為S1,滿足條件[x]2+[y]2≤1的點(diǎn)(x,y)構(gòu)成的平面區(qū)域的面積為S2(其中[x],[y]分別表示不大于x,y的最大整數(shù),例如[-0.3]=-1,[1.2]=1),給出下列結(jié)論:
①點(diǎn)(S1,S2)在直線y=x左上方的區(qū)域內(nèi);
②點(diǎn)(S1,S2)在直線x+y=7左下方的區(qū)域內(nèi);
③S1<S2
④S1>S2
其中所有正確結(jié)論的序號是
 

查看答案和解析>>

同步練習(xí)冊答案