斜率為2的直線l與雙曲線
x2
3
-
y2
2
=1
交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)直線l的方程為y=2x+b,代入雙曲線
x2
3
-
y2
2
=1
,化簡,求出x1+x2 和x1•x2的值,由|AB|=4,求出b,即可得出直線l的方程.
解答: 解:由題意,設(shè)直線l的方程為y=2x+b.
代入雙曲線
x2
3
-
y2
2
=1
,可得10x2+12bx+3b2+6=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
6b
5
,x1•x2=
3b2+6
10
,
∴|AB|=
1+22
•|x1-x2|=
5
36b2
25
-4•
3b2+6
10
=4,
∴b=±
210
3

∴直線l的方程為y=2x±
210
3
點(diǎn)評:本題考查直線和雙曲線的位置關(guān)系,弦長公式的應(yīng)用,正確運(yùn)用韋達(dá)定理是解題的關(guān)鍵和難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,BH⊥CD于點(diǎn)H,BH交AC于點(diǎn)E,已知|
BE
|=3,
AB
2
-
AC
AE
+
AC
BE
-
CB
AE
=15,則
AE
EC
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線3x-
3
y+m=0與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)恒有兩個(gè)公共點(diǎn),則雙曲線C的離心率的取值范圍是( 。
A、(1,2)
B、(2,+∞)
C、(1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1:y=4x+m,(m<0)與拋物線C1:y=2ax2,(a>0)和圓C2x2+(y+1)2=17都相切,F(xiàn)是拋物線C1的焦點(diǎn).
(Ⅰ)求m與a的值;
(Ⅱ)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)作拋物線C1的切線l,直線l交y軸于點(diǎn)B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點(diǎn)M在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)M所在的定直線為l2,直線l2與y軸交點(diǎn)為N,連接MF交拋物線C1于P,Q兩點(diǎn),求△NPQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(2,-1)的直線l交橢圓
x 2
8
+
y 2
4
=1
于M、N兩點(diǎn),B(0,2)是橢圓的一個(gè)頂點(diǎn),若線段MN的中點(diǎn)恰為點(diǎn)P.
(Ⅰ)求直線l的方程;
(Ⅱ)求△BMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算
(1)設(shè)f(x)=e|x|,求
4
-2
f(x)dx的值;
(2)求
C
2
3
+C
2
4
+C
2
5
+…
+C
2
30
的值(結(jié)果用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=
x
1+x2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)M(-1,0),N(1,0)連線的斜率的積為定值-4,設(shè)點(diǎn)P的軌跡為C.
(1)求出曲線C的方程;
(2)設(shè)直線y=kx+1與C交于A,B兩點(diǎn),若
OA
OB
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-
y2
b2
=1(b>0)的一個(gè)焦點(diǎn)到其漸近線的距離是2,則b=
 
;此雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案