【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若存在,使得不等式成立,求m的取值范圍.
【答案】(1)當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)
【解析】
(1)求得函數(shù)的導(dǎo)函數(shù)為,再和兩種情況討論可得;
(2)若存在,使得不等式成立,即存在,使得不等式成立,令,,則,求出函數(shù)的導(dǎo)數(shù),說明其單調(diào)性及最小值,即可求出參數(shù)的取值范圍;
解:(1)函數(shù)的定義域?yàn)?/span>,
且
當(dāng),即時(shí),恒成立,故函數(shù)在上單調(diào)遞增;
當(dāng),即時(shí),令,解得,故函數(shù)在上單調(diào)遞增;
令,解得,故函數(shù)在上單調(diào)遞減;
綜上所述,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
(2)若存在,使得不等式成立,即存在,使得不等式成立,
令,,則,
當(dāng)時(shí),,在上恒成立,故函數(shù)在上單調(diào)遞增,,解得,所以;
當(dāng)時(shí),,在上單調(diào)遞減,在上單調(diào)遞增,則
令,,恒成立,即函數(shù),在上單調(diào)遞減,又故在上恒成立,即,故
當(dāng)時(shí),,在上恒成立,故函數(shù)在上單調(diào)遞減,,不符題意,舍去;
綜上可得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有一個(gè)容量為300噸的水塔,每天從早上6時(shí)起到晚上10時(shí)止供應(yīng)該廠的生產(chǎn)和生活用水.已知該廠生活用水為每小時(shí)10噸,生產(chǎn)用水量(噸)與時(shí)間(單位:小時(shí),且規(guī)定早上6時(shí))的函數(shù)關(guān)系式為:,水塔的進(jìn)水量分為10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí),每小時(shí)進(jìn)水量就增加10噸.若某天水塔原有水100噸,在開始供水的同時(shí)打開進(jìn)水管.
(1)若進(jìn)水量選擇為級(jí),水塔中剩余水量為噸,試寫出與的函數(shù)關(guān)系式;
(2)如何選擇進(jìn)水量,既能始終保證該廠的用水(水塔中水不空)又不會(huì)使水溢出?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),使得在上的值域恰好是?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是等邊三角形,D.E分別是BC.AC上兩點(diǎn),且,與AD交于點(diǎn)H,鏈接CH.
(1)當(dāng)時(shí),求的值;
(2)如圖2,當(dāng)時(shí),__________; __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了健身促銷活動(dòng),收費(fèi)標(biāo)準(zhǔn)如下:健身時(shí)間不超過1小時(shí)免費(fèi),超過1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為20元(不足l小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人各自獨(dú)立地來該健身館健身,設(shè)甲、乙健身時(shí)間不超過1小時(shí)的概率分別為,,健身時(shí)間1小時(shí)以上且不超過2小時(shí)的概率分別為,,且兩人健身時(shí)間都不會(huì)超過3小時(shí).
(1)設(shè)甲、乙兩人所付的健身費(fèi)用之和為隨機(jī)變量(單位:元),求的分布列與數(shù)學(xué)期望;
(2)此促銷活動(dòng)推出后,健身館預(yù)計(jì)每天約有300人來參與健身活動(dòng),以這兩人健身費(fèi)用之和的數(shù)學(xué)期望為依據(jù),預(yù)測(cè)此次促銷活動(dòng)后健身館每天的營業(yè)額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求面與面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一些選手參加數(shù)學(xué)競賽,其中有些選手互相認(rèn)識(shí),有些選手互相不認(rèn)識(shí),而任何兩個(gè)不相識(shí)的選手都恰有兩個(gè)共同的熟人.若與認(rèn)識(shí),但沒有共同的熟人,求證:、認(rèn)識(shí)的熟人一樣多.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)作直線與兩坐標(biāo)軸分別交于點(diǎn)、.當(dāng)的面積在上變化時(shí),直線條數(shù)的集合為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com