【題目】設橢圓:的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.
【答案】(1);(2)6.
【解析】
(1)首先可根據(jù)題意得出,然后根據(jù)得出,最后通過計算出的值并寫出橢圓方程;
(2)首先可以設、,然后根據(jù)直線過點設出直線方程,再然后聯(lián)立直線方程與橢圓方程,根據(jù)韋達定理得出以及,再然后結(jié)合題意得出四邊形是平行四邊形以及其面積,最后通過計算即可得出結(jié)果.
(1)因為橢圓上一點到左右兩個焦點、的距離之和是4,
所以,,
因為,所以,
所以橢圓C方程為.
(2)設,,
因為直線過點,所以可設直線方程為,
聯(lián)立方程,消去可得:,
化簡整理得,
其中,
,,
因為,所以四邊形是平行四邊形,
設平面四邊形的面積為,
則,
設,則,
所以,
因為,所以,,
所以四邊形面積的最大值為6.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.
(1)求的單調(diào)區(qū)間;
(2)設,對任意,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,的兩頂點,且點滿足
(1)求動點的軌跡方程;
(2)設,求動點的軌跡方程;
(3)過點的動直線與曲線交于不同兩點,過點作軸垂線,試判斷直線與直線的交點是否恒在一條定直線上?若是,求該定直線的方程,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某老師是省級課題組的成員,主要研究課堂教學目標達成度,為方便研究,從實驗班中隨機抽取30次的隨堂測試成績進行數(shù)據(jù)分析.已知學生甲的30次隨堂測試成績?nèi)缦拢M分為100分):
(1)把學生甲的成績按,,,,,分成6組,列出頻率分布表,并畫出頻率分布直方圖:
(2)為更好的分析學生甲存在的問題,從隨堂測試成績50分以下(不包括50分)的試卷中隨機抽取3份進行分析,求恰有2份成績在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示四棱錐的底面為正方形,平面則下列結(jié)論中不正確的是( )
A.B.平面
C.直線與平面所成的角等于30°D.SA與平面SBD所成的角等于SC與平面SBD所成的角
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級模仿《中國詩詞大會》節(jié)目舉辦學校詩詞大會,進入正賽的條件為:電腦隨機抽取10首古詩,參賽者能夠正確背誦6首及以上的進入正賽,若學生甲參賽,他背誦每一首古詩的正確的概率均為
(1)求甲進入正賽的概率;
(2)若進入正賽,則采用積分淘汰制,規(guī)則是:電腦隨機抽取4首古詩,每首古詩背誦正確加2分,錯誤減1分.由于難度增加,甲背誦每首古詩正確的概率為,求甲在正賽中積分的概率分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果數(shù)列,,…,(m ≥ 3,)滿足:①<<…<;②存在實數(shù),,,…,和d,使得≤<≤<≤<…≤<,且對任意0 ≤ i ≤ m﹣1(I ),均有,那么稱數(shù)列,,…,是“Q數(shù)列”.
(1)判斷數(shù)列1,3,6,10是不是“Q數(shù)列”,并說明理由;
(2)已知k,t均為常數(shù),且k>0,求證:對任意給定的不小于3的正整數(shù)m,數(shù)列 (n=1,2,…,m)都是“Q數(shù)列”;
(3)若數(shù)列(n=1,2,…,m)是“Q數(shù)列”,求m的所有可能值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院用光電比色計檢查尿汞時,得尿汞含量(毫克/升)與消光系數(shù)如下表:
尿汞含量 | 2 | 4 | 6 | 8 | 10 |
消光系數(shù) | 64 | 138 | 205 | 285 | 360 |
(1)作散點圖;
(2)如果與之間具有線性相關(guān)關(guān)系,求回歸線直線方程;
(3)估計尿汞含量為9毫克/升時消光系數(shù).
,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(13分)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點.
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com