【題目】如圖1,有一邊長(zhǎng)為2的正方形ABCD,E是邊AD的中點(diǎn),將沿著直線(xiàn)BE折起至位置(如圖2),此時(shí)恰好,點(diǎn)在底面上的射影為O.
(1)求證:;
(2)求直線(xiàn)與平面BCDE所成角的正弦值.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)利用直線(xiàn)與平面垂直的判定定理證明面,再根據(jù)直線(xiàn)與平面垂直的性質(zhì)可得;
(2)依題意得就是直線(xiàn)與面BCDE所成角,延長(zhǎng)EO交BC于H,連接,在直角三角形中得,在直角三角形中得,在直角三角形中得.
(1)證明:∵,
又∵
∴面
∴.
(2)∵點(diǎn)在底面上的射影為O.
∴面BCDE
∴就是直線(xiàn)與面BCDE所成角.
延長(zhǎng)EO交BC于H,連接
如圖:
∵,
且
∴面
∴
∵E為AD中點(diǎn)
∴H為BC中點(diǎn)
∵,
由(1)知
∴
∴
∴
所以直線(xiàn)與平面BCDE所成角的正弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為偶函數(shù),求的值;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(a>0)是定義在R上的偶函數(shù),
(1)求實(shí)數(shù)a的值;
(2)判斷并證明函數(shù)在的單調(diào)性;
(3)若關(guān)于的不等式的解集為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,P為線(xiàn)段AC上任意一點(diǎn),則的范圍是( )
A. [1,4] B. [0,4] C. [-2,4] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝公司要對(duì)某種工藝品深加工,已知每個(gè)工藝品進(jìn)價(jià)為20元,每個(gè)的加工費(fèi)為n元,銷(xiāo)售單價(jià)為x元.根據(jù)市場(chǎng)調(diào)查,須有,,,同時(shí)日銷(xiāo)售量m(單位:個(gè))與成正比.當(dāng)每個(gè)工藝品的銷(xiāo)售單價(jià)為29元時(shí),日銷(xiāo)售量為1000個(gè).
(1)寫(xiě)出日銷(xiāo)售利潤(rùn)y(單位:元)與x的函數(shù)關(guān)系式;
(2)當(dāng)每個(gè)工藝品的加工費(fèi)用為5元時(shí),要使該公司的日銷(xiāo)售利潤(rùn)為100萬(wàn)元,試確定銷(xiāo)售單價(jià)x的值.(提示:函數(shù)與的圖象在上有且只有一個(gè)公共點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀(guān)眾對(duì)某類(lèi)休育節(jié)目的收視情況,隨機(jī)抽取了100名觀(guān)眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀(guān)眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀(guān)眾稱(chēng)為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否有的把握認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將日均收看讀體育節(jié)目不低于50分鐘的觀(guān)眾稱(chēng)為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀(guān)眾的概率.
附.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且其中一個(gè)焦點(diǎn)的坐標(biāo)為.
(1)求橢圓的方程;
(2)過(guò)橢圓右焦點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的,,都有.
(1)判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(2)若,求實(shí)數(shù)的取值范圍;.
(3)若不等式對(duì)任意和都恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測(cè)算,每噴灑1個(gè)單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時(shí)刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時(shí),它才能起到去污作用.
(Ⅰ)若一次噴灑4個(gè)單位的去污劑,則去污時(shí)間可達(dá)幾天?
(Ⅱ)若第一次噴灑2個(gè)單位的去污劑,6天后再?lài)姙?/span> 個(gè)單位的去污劑,要使接下來(lái)的4天中能夠持續(xù)有效去污,試求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com