【題目】若將函數(shù) 的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則φ的最小正值是(
A.
B.
C.
D.

【答案】A
【解析】解:把函數(shù) 的圖象向右平移φ個(gè)單位,可得y=sin[2(x﹣φ)+ ]=sin(2x﹣2φ+ )的圖象, 由于所得圖象關(guān)于y軸對(duì)稱,故有﹣2φ+ =kπ+ ,k∈Z,即φ=﹣ ,
則φ的最小正值為 ,
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的參數(shù)方程是 (α為參數(shù))
(1)將C的參數(shù)方程化為普通方程;
(2)在直角坐標(biāo)系xOy中,P(0,2),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ ρsinθ+2 =0,Q為C上的動(dòng)點(diǎn),求線段PQ的中點(diǎn)M到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的 中點(diǎn).

(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上,試
確定點(diǎn)M的位置,使二面角M﹣BQ﹣C大小為60°,并求出 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.

(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點(diǎn)共線,且滿足|GH|=2|OG′|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(Ⅰ)如果f(x)在x=0處取得極值,求k的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)k=0時(shí),過(guò)點(diǎn)A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn).
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大;
(2)若a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出x萬(wàn)元與銷售額y萬(wàn)元之間有如下的對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70


(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為12萬(wàn)元時(shí),銷售收入y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案