在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知
BA
BC
=2,cosB=
1
3
,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B-C)的值.
考點(diǎn):余弦定理,平面向量數(shù)量積的運(yùn)算,兩角和與差的余弦函數(shù)
專(zhuān)題:三角函數(shù)的求值
分析:(Ⅰ)利用平面向量的數(shù)量積運(yùn)算法則化簡(jiǎn)
BA
BC
=2,將cosB的值代入求出ac=6,再利用余弦定理列出關(guān)系式,將b,cosB以及ac的值代入得到a2+c2=13,聯(lián)立即可求出ac的值;
(Ⅱ)由cosB的值,利用同角三角函數(shù)間基本關(guān)系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,進(jìn)而求出cosC的值,原式利用兩角和與差的余弦函數(shù)公式化簡(jiǎn)后,將各自的值代入計(jì)算即可求出值.
解答: 解:(Ⅰ)∵
BA
BC
=2,cosB=
1
3

∴c•acosB=2,即ac=6①,
∵b=3,
∴由余弦定理得:b2=a2+c2-2accosB,即9=a2+c2-4,
∴a2+c2=13②,
聯(lián)立①②得:a=3,c=2;
(Ⅱ)在△ABC中,sinB=
1-cos2B
=
1-(
1
3
)2
=
2
2
3
,
由正弦定理
b
sinB
=
c
sinC
得:sinC=
c
b
sinB=
2
3
×
2
2
3
=
4
2
9
,
∵a=b>c,∴C為銳角,
∴cosC=
1-sin2C
=
1-(
4
2
9
)
2
=
7
9

則cos(B-C)=cosBcosC+sinBsinC=
1
3
×
7
9
+
2
2
3
×
4
2
9
=
23
27
點(diǎn)評(píng):此題考查了正弦、余弦定理,平面向量的數(shù)量積運(yùn)算,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點(diǎn),BC=CA=CC1,則BM與AN所成角的余弦值為( 。
A、
1
10
B、
2
5
C、
30
10
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)每個(gè)工作日甲、乙、丙、丁4人需使用某種設(shè)備的概率分別為0.6、0.5、0.5、0.4,各人是否需使用設(shè)備相互獨(dú)立.
(Ⅰ)求同一工作日至少3人需使用設(shè)備的概率;
(Ⅱ)X表示同一工作日需使用設(shè)備的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子里裝有三張卡片,分別標(biāo)記有1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同,隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.
(Ⅰ)求“抽取的卡片上的數(shù)字滿(mǎn)足a+b=c”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=-2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1,l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)每個(gè)工作日甲,乙,丙,丁4人需使用某種設(shè)備的概率分別為0.6,0.5,0.5,0.4,各人是否需使用設(shè)備相互獨(dú)立.
(Ⅰ)求同一工作日至少3人需使用設(shè)備的概率;
(Ⅱ)實(shí)驗(yàn)室計(jì)劃購(gòu)買(mǎi)k臺(tái)設(shè)備供甲,乙,丙,丁使用,若要求“同一工作日需使用設(shè)備的人數(shù)大于k”的概率小于0.1,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長(zhǎng)交橢圓于點(diǎn)A,過(guò)點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C.
(1)若點(diǎn)C的坐標(biāo)為(
4
3
1
3
),且BF2=
2
,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察分析下表中的數(shù)據(jù):
多面體面數(shù)(F)頂點(diǎn)數(shù)(V)棱數(shù)(E)
三棱柱569
五棱錐6610
立方體6812
猜想一般凸多面體中F,V,E所滿(mǎn)足的等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos(2x-
π
6
)的最小正周期是( 。
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

同步練習(xí)冊(cè)答案