已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形

(1)求證:; (2)求證:;

(3)設中點,在邊上找一點,使平面,并求的值.

 

【答案】

(1)根據(jù)三視圖還原幾何體,并能結(jié)合向量的知識建立空間直角坐標系,借助于法向量來得到證明。

(2)對于線面的垂直的證明,一般通過線線垂直的證明來得到線面垂直。

(3)

【解析】

試題分析:解:(1)證明:該幾何體的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,

兩兩互相垂直。以分別為軸建立空間直角坐標系,則 ,   2分

,,∴

,,

  4分

(2),

,又

           8分

(3)設上一點,的中點,,,

設平面的一個法向量為,則有

,則有

,得,

,…10分

//平面,,于是

解得:                                  12分

平面//平面,此時,

                           14分

(注:此題用幾何法參照酌情給分)

考點:空間中點線面的位置關(guān)系

點評:主要是考查了空間中的線面的平行和垂直的證明,熟練的掌握判定定理和性質(zhì)定理是結(jié)題的關(guān)鍵,屬于基礎題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
精英家教網(wǎng)精英家教網(wǎng)
(Ⅰ)若M為CB中點,證明:MA∥平面CNB1;
(Ⅱ)求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(1)求證:BN⊥平面C1B1N;
(2)θ 為直線C1N與平面CNB1所成的角,求sinθ 的值
(3)設M為AB中點,在BC邊上找一點P,使MP∥平面CNB1并求
BPPC
的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖與它的三視圖,其中俯視圖為正三角形,其它兩個視圖是矩形.已知D是這個幾何體的棱A1C1上的中點.

(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:直線BC1∥平面AB1D;
(Ⅲ)求證:直線B1D⊥平面AA1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:BC∥平面C1B1N;
(2)求證:BN⊥平面C1B1N;
(3)設M為AB中點,在BC邊上找一點P,使MP∥平面CNB1,并求
BPPC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•樂山一模)已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明:BN⊥平面C1NB1;
(Ⅱ)求平面CNB1與平面C1NB1所成角的余弦值;

查看答案和解析>>

同步練習冊答案