分析 取AB中點(diǎn)G,連接EG,可證得平面PAB⊥平面PEG,過E作EF⊥PG,垂足為F,則EF⊥平面ABP,即F為E在平面PAB上的投影,然后求解直角三角形得答案.
解答 解:如圖,
取AB中點(diǎn)G,連接EG,則EG⊥AB,又PE⊥平面ABCD,∴PE⊥AB,
∵PE∩EG=E,∴AB⊥平面PEG,則平面PAB⊥平面PEG,且平面PEG∩平面PAB于PG.
過E作EF⊥PG,垂足為F,則EF⊥平面ABP,即F為E在平面PAB上的投影.
在Rt△PEG與Rt△PFE中,可得∠PEF=∠PGE.
∵P-ABCD是棱長(zhǎng)均為1的正四棱錐,∴EG=$\frac{1}{2}$,PE=$\frac{\sqrt{2}}{2}$.
∴tan∠PEF=$\frac{PE}{EG}=\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}=\sqrt{2}$.
故答案為:$\sqrt{2}$.
點(diǎn)評(píng) 本題考查線面角的求法,考查空間想象能力和思維能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 15 | C. | 12 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 135° | B. | 120° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,3] | B. | [1,3) | C. | [-3,∞) | D. | (-3,3] |
查看答案和解析>>
科目:選擇題
來源: 題型:A. | 6 | B. | 32 | C. | 33 | D. | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com