【題目】已知等差數(shù)列中, .等比數(shù)列的通項公式.

(I)求數(shù)列的通項公式;

(II)求數(shù)列的前項和

【答案】(1)(2)

【解析】試題分析:I根據(jù)列出關于 的方程組,求出 的值進而可得數(shù)列的通項公式;II由(I)知, ,利用分組求和法,分別求出等差、等比數(shù)列列的和即可得結果.

試題解析:(I)由題知

解得,

所以.

(II)由(I)知, ,

所以

從而

【方法點晴】本題主要考查等差數(shù)列的通項公式及利用“分組求和法”求數(shù)列前項和,屬于中檔題. 利用“分組求和法”求數(shù)列前項和常見類型有兩種:一是通項為兩個公比不相等的等比數(shù)列的和或差,可以分別用等比數(shù)列求和后再相加減;二是通項為一個等差數(shù)列和一個等比數(shù)列的和或差,可以分別用等差數(shù)列求和、等比數(shù)列求和后再相加減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】通過研究學生的學習行為,心理學家發(fā)現(xiàn),學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態(tài),隨后學生的注意力開始分散,分析結果和實驗表明,用表示學生掌握和接受概念的能力(的值越大,表示接受能力越強),表示提出和講授概念的時間(單位:分),可以有以下公式:

(1)開講多少分鐘后,學生的接受能力最強?能維持多少分鐘?

(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?

(3)一個數(shù)學難題,需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講授完這個難題?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且,.

(1)求數(shù)列的通項公式;

(2)數(shù)列滿足,.

求數(shù)列的通項公式;

是否存在正整數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中,,且對任意的成等比數(shù)列,其公比為.

(1)若,求;

(2)若對任意的成等差數(shù)列,其公差為..

求證:成等差數(shù)列并指出其公差;

,試求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,命題,命題

時,試判斷命題是命題的什么條件;

的取值范圍,使命題是命題的一個必要但不充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修45:不等式選講

已知函數(shù)fx=|2x-a|+a.

1若不等式fx6的解集為{x|-2x3},求實數(shù)a的值;

21的條件下,若存在實數(shù)n使fnm-f-n成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=,設bn=,n∈N*。

(1)證明{bn}是等比數(shù)列(指出首項和公比);

(2)求數(shù)列{log2bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某中學高一學生的數(shù)學與地理的水平測試成績抽樣統(tǒng)計如下表:若抽取的學生數(shù)為,成績分為(優(yōu)秀)、(良好)、(及格)三個等級,設, 分別表示數(shù)學成績與地理成績.例如:表中地理成績?yōu)?/span>等級的共有人,數(shù)學成績?yōu)?/span>級且地理成績?yōu)?/span>等級的有8人.已知均為等級的頻率是0.07.

(1)設在該樣本中,數(shù)學成績優(yōu)秀率是,求, 的值;

(2)已知, ,求數(shù)學成績?yōu)?/span>等級的人數(shù)比數(shù)學成績?yōu)?/span>等級的人數(shù)多的概率.

人數(shù)

14

40

10

36

28

8

34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.

)求在未來4年中,至多1年的年入流量超過120的概率;

)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系;

年入流量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺發(fā)電機年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺發(fā)電機年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

同步練習冊答案