【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為 ,求三棱錐C1﹣A1CD的體積.

【答案】
(1)證明:連接A1C交AC1于E,因?yàn)锳A1=AC,又A A1⊥平面ABCD,所以AA1⊥AC,

所以A1ACC1為正方形,所以A1C⊥AC1

在△ACD中,AD=2CD,∠ADC=60°,由余弦定理得 AC2=AD2+CD2﹣2 ACDCcos60°,

所以 ,所以AD2=AC2+CD2,

所以CD⊥AC,又AA1⊥CD.所以CD⊥平面A1ACC1,

所以CD⊥AC1,所以AC1⊥平面A1 B1CD.


(2)如圖建立直角坐標(biāo)系,則D(2,0,0), , ,

對(duì)平面 AC1D,因?yàn)? ,

所以法向量 ,

平面C1CD的法向量為 ,

,得λ=1,

所以 A A1=AC,此時(shí),CD=2, ,

所以


【解析】(1)連接A1C交AC1于E,證明AA1⊥AC,CD⊥AC,推出CD⊥平面A1ACC1 , 然后證明AC1⊥平面A1 B1CD.(2)如圖建立直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),求出平面 AC1D的法向量 ,平面C1CD的法向量為 ,通過向量的數(shù)量積求出λ=1,然后利用等體積法求解體積即可.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面垂直的判定,需要了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),fx=x2–2x+2

1)求函數(shù)fx)的解析式;

2)當(dāng)x[mn]時(shí),fx)的取值范圍為[2m2n],試求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為梯形,平面,,

中點(diǎn).

(1)求證:平面平面

(2)線段上是否存在一點(diǎn),使平面?若存在,找出具體位置,并進(jìn)行證明:若不存在,請(qǐng)分析說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).

(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是拋物線的準(zhǔn)線直線,與拋物線沒有公共點(diǎn)動(dòng)點(diǎn)在拋物線,點(diǎn)到直線的距離之和的最小值等于2.

求拋物線的方程

點(diǎn)在直線上運(yùn)動(dòng),過點(diǎn)做拋物線的兩條切線切點(diǎn)分別為,在平面內(nèi)是否存在定點(diǎn)使得恒成立?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo)若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市日至日的空氣質(zhì)量指數(shù)趨勢(shì)圖,某人隨機(jī)選擇日至日中的某一天到達(dá)該市,并停留天.

(1)求此人到達(dá)當(dāng)日空氣質(zhì)量指數(shù)大于的概率;

(2)設(shè)是此人停留期間空氣質(zhì)量指數(shù)小于的天數(shù),求的分布列與數(shù)學(xué)期望;

(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCDABCD的棱長(zhǎng)為a,連接AC,AD,AB,BD,BCCD,得到一個(gè)三棱錐.求:

(1)三棱錐ABCD的表面積與正方體表面積的比值;

(2)三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過點(diǎn).

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù),則是否存在實(shí)數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案