【題目】某單位有老年人30人,中年人90人,青年人60人,為了調(diào)查他們的身體健康狀況,采用分層抽樣的方法從他們中間抽取一個容量為36的樣本,則應(yīng)抽取老年人的人數(shù)是(
A.5
B.6
C.7
D.8

【答案】B
【解析】解:某單位有老年人30人,中年人90人,青年人60人,這個單位共有30+90+60=180,假設(shè)用分層抽樣的方法從他們中抽取了36個人進行體檢,
則每個個體被抽到的概率是 =
∴應(yīng)抽取老年人的人數(shù)是30× =6,
故選:6.
【考點精析】通過靈活運用分層抽樣,掌握先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,動點滿足,設(shè)動點的軌跡為曲線,將曲線上所有點的縱坐標變?yōu)樵瓉淼囊话,橫坐標不變,得到曲線.

(1)求曲線的方程;

(2)是曲線上兩點,且, 為坐標原點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強,幾乎達到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間r(小時)之間近似滿足如圖所示的曲線

(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進一步測定:每毫升血液中含藥量不少于 微克時,治療有效,求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:

為了評價兩種模型的擬合效果,完成以下任務(wù):

(1)(ⅰ)完成下表(計算結(jié)果精確到0.1):

)分別計算模型甲與模型乙的殘差平方和,并通過比較,的大小,判斷哪個模型擬合效果更好.

(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的焦點為F,直線y軸的交點為P,與C的交點為Q,且.

1)求C的方程;

2)過F的直線C相交于A,B兩點,若AB的垂直平分線C相較于M,N兩點,且A,MB,N四點在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要條件
C.命題“若x<﹣1,則x2﹣2x﹣3>0”的否定為:“若x≥﹣1,則x2﹣2x﹣3≤0”
D.已知命題 p:x∈R,x2+x﹣1<0,則p:x∈R,x2+x﹣1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實數(shù)a的取值范圍是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),他們在培訓(xùn)期間8次模擬考試的成績?nèi)缦拢?甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學(xué)生成績的莖葉圖,并求學(xué)生乙成績的平均數(shù)和方差;
(2)從甲同學(xué)超過80分的6個成績中任取兩個,求這兩個成績中至少有一個超過90分的概率.
(3)甲同學(xué)超過80(分)的成績有82 81 95 88 93 84,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 某中學(xué)的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

級優(yōu)

級良

級輕度

污染

級中度

污染

級重度

污染

級嚴重污染

該社團將該校區(qū)在2016100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算2017年(以365天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);

用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在(050],(50100],(100150]的天數(shù)中各應(yīng)抽取幾天?

已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為2000元,空氣質(zhì)量等級為3級時每天需凈化空氣的費用為4000若在)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用為4000元的概率

查看答案和解析>>

同步練習(xí)冊答案