【題目】定義在上的函數(shù)如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以4為上界的有界函數(shù),求實數(shù)的取值范圍.

【答案】(1)值域為,不是有界函數(shù);(2)

【解析】試題分析:(1)把代入函數(shù)的表達式,得出函數(shù)的單調(diào)區(qū)間,結(jié)合有界函數(shù)的定義進行判斷;(2)由題意知,恒成立,令,恒成立,設(shè),求出單調(diào)區(qū)間,得到函數(shù)的最值,從而求出的值.

試題解析:(1)當時,,令,∵,∴,;∵上單調(diào)遞增,∴,即上的值域為,故不存在常數(shù),使成立.∴函數(shù)上不是有界函數(shù).

(2)由題意知,恒成立,即:,令,∵,∴.∴恒成立,∴,設(shè),,由,由于上遞增,上遞減,上的最大值為,上的最小值為,∴實數(shù)的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個樹形圖依據(jù)下列規(guī)律不斷生長,1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點,則第11行的實心圓點的個數(shù)是

A. 21 B. 34 C. 55 D. 89

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一段演繹推理:直線平行于平面,則這條直線平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線平面,則直線直線的結(jié)論是錯誤的,這是因為 ( )

A. 大前提錯誤 B. 小前提錯誤 C. 推理形式錯誤 D. 非以上錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14)

如圖的幾何體中, 平面, 平面,為等邊三角形, 的中點.

1)求證: 平面

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為招聘新員工設(shè)計了一個面試方案:應聘者從6道備選題中一次性隨機抽取3道題,按題目要求獨立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學期望;

(2)請分析比較甲、乙兩人誰面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某中學高三文科班學生的數(shù)學與地理的水平測試成績抽樣統(tǒng)計如下表:

若抽取學生人,成績分為(優(yōu)秀),(良好),(及格)三個等次,設(shè)分別表示數(shù)學成績與地理成績,例如:表中地理成績?yōu)?/span>等級的共有(人),數(shù)學成績?yōu)?/span>等級且地理成績?yōu)?/span>等級的共有8人.已知均為等級的概率是.

(1)設(shè)在該樣本中,數(shù)學成績的優(yōu)秀率是,求的值;

(2)已知,,求數(shù)學成績?yōu)?/span>等級的人數(shù)比等級的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長為4,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos 2A3cos(BC)1.

(1)求角A的大;

(2)△ABC的面積S5,b5,求sin Bsin C的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,直線與圓相切.

(1)求橢圓的方程;

(2)已知定點,若直線與橢圓相交于兩點,試判斷是否存在實數(shù),使得以為直徑的圓過定點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案