【題目】設(shè)有下列四個命題:

:若,則;

:若,則;

:“”是“為奇函數(shù)”的充要條件;

:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.

其中,真命題的是  

A. ,B. ,C. D. ,

【答案】C

【解析】

根據(jù)不等式的性質(zhì),結(jié)合函數(shù)奇偶性的性質(zhì),等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義分別進行點評即可.

:當(dāng)時,滿足,則;不成立,即命題是假命題

:設(shè),則,即是減函數(shù),

,,即,則成立,即命題是真命題;

,則,即,函數(shù)是奇函數(shù),

當(dāng),滿足是奇函數(shù),但不成立,即“”是“為奇函數(shù)”的充要條件錯誤;即命題是假命題,

:“等比數(shù)列中,”,則,若,則

,此時,即,數(shù)列為遞減數(shù)列,

,則

,此時,即,數(shù)列為遞減數(shù)列,綜上等比數(shù)列是遞減數(shù)列,

若等比數(shù)列是遞減數(shù)列,則成立,

即等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件,故命題是真命題;

故真命題是,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于的一元二次方程

)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為A是橢圓短軸的一個端點,直線AF與橢圓另一交點為B,且.

(1)求橢圓方程;

(2)若斜率為1的直線l交橢圓于CD,且CD為底邊的等腰三角形的頂點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的曲線的方程:

1)離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程

2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,是線段上一點且滿足,是線段上一動點,把沿折起得到,使得平面平面,分別記,與平面所成角為,,平面與平面所成銳角為,則:(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, , .

(Ⅰ)求數(shù)列 的通項公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)曲線交于點,曲線軸交于點,求線段的中點到點的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了分析某個高三學(xué)生的學(xué)習(xí)狀態(tài).現(xiàn)對他前5次考試的數(shù)學(xué)成績x,物理成績y進行分析.下面是該生前5次考試的成績.

數(shù)學(xué)

120

118

116

122

124

物理

79

79

77

82

83

已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求物理成績y與數(shù)學(xué)成績x的回歸直線方程;

我們常用來刻畫回歸的效果,其中越接近于1,表示回歸效果越好.求

已知第6次考試該生的數(shù)學(xué)成績達到132,請你估計第6次考試他的物理成績大約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動點,點在射線上,且滿足.

(Ⅰ)求點的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點,過點且傾斜角為的直線相交于兩點,求的值.

查看答案和解析>>

同步練習(xí)冊答案