在某大學聯(lián)盟的自主招生考試中,報考文史專業(yè)的考生參加了人文基礎(chǔ)學科考試科目“語文”和“數(shù)學”的考試.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,本次考試中成績在內(nèi)的記為,其中“語文”科目成績在內(nèi)的考生有10人.

(1)求該考場考生數(shù)學科目成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的人數(shù);
(2)已知參加本考場測試的考生中,恰有2人的兩科成績均為.在至少一科成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的考生中,隨機抽取2人進行訪談,求這2人的兩科成績均為的概率.

(1)3;(2).

解析試題分析:(1)頻率分布直方圖中面積表示頻率,設頻率=,為總?cè)藬?shù),所以,結(jié)合的頻率,;
(2)首先算出語文與數(shù)學中成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/d/fripk2.png" style="vertical-align:middle;" />的人數(shù),通過列舉的方法計算出選出的2人所有可能的情況及這兩人的兩科成績等級均為的情況;利用古典概型概率公式求出隨機抽取兩人進行訪談,這兩人的兩科成績等級均為的概率。
試題解析:(1)該考場的考生人數(shù)為10÷0.25=40人.   2分
數(shù)學科目成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的人數(shù)為
40×(1-0.0025×10-0.015×10-0.0375×10×2)=40×0.075=3人.   6分
(2)語文和數(shù)學成績?yōu)锳的各有3人,其中有兩人的兩科成績均為,所以還有兩名同學只有一科成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />.   8分
設這四人為甲、乙、丙、丁,其中甲、乙的兩科成績均為,則在至少一科成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/a/1udps4.png" style="vertical-align:middle;" />的考生中,隨機抽取兩人進行訪談,基本事件為{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁}, {丙,丁}共6個,   10分
設“隨機抽取兩人,這兩人的兩科成績均為”為事件,則事件包含的事件有1個,則.   12分
考點:1.頻率分布直方圖的應用;2.古典概型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

通過隨機詢問110名不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:

 


總計
愛好
40
20
60
不愛好
20
30
50
總計
60
50
110
附: 

0.050
0.010
0.001

3.841
6.635
10.828
 
試考查大學生“愛好該項運動是否與性別有關(guān)”,若有關(guān),請說明有多少把握。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某產(chǎn)品的三個質(zhì)量指標分別為x,y,z,用綜合指標S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:

產(chǎn)品編號
A1
A2
A3
A4
A5
質(zhì)量指標(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號
A6
A7
A8
A9
A10
質(zhì)量指標(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機抽取兩件產(chǎn)品,
(1)用產(chǎn)品編號列出所有可能的結(jié)果;
(2)設事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標S都等于4”,求事件B發(fā)生的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,現(xiàn)學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調(diào)查,先將800人按001,002, ,800進行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)

(2)抽取的100的數(shù)學與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求a,b的值:

人數(shù)
數(shù)學
優(yōu)秀
良好
及格
地理
優(yōu)秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成績及格的學生中,已知求數(shù)學成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某化肥廠有甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量(單位:kg),分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計算甲、乙車間產(chǎn)品重量的平均數(shù)與方差,并說明哪個車間產(chǎn)品較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)
頻數(shù)
頻率















合計


(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出、的值;
(2)某人從燈泡樣品中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求的最小值;
(3)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解某地區(qū)學生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:

態(tài)度

 

應該取消
應該保留
無所謂
在校學生
2100人
120人
y
社會人士
600人
x
z
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)如下表:

 
1號
2號
3號
4號
5號
甲組
4
5
x
9
10
乙組
5
6
7
y
9
(1)已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)為7,分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機抽取一名技工,對其加工的零件進行檢測,若2人加工的合格零件個數(shù)之和超過14,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數(shù)
y(個)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率.
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習冊答案