對(duì)?a,b∈R,定義:max{a,b}=
a,(a≥b)
b,(a<b)
,min{a,b}=
a,(a<b)
b,(a≥b)
.則下列各式:
(1)max{a,b}=
1
2
(a+b-|a-b|)
(2)max{a,b}=
1
2
(a+b+|a-b|)
(3)min{a,b}=
1
2
(a+b+|a-b|)
(4)min{a,b}=
1
2
(a+b-|a-b|)
其中恒成立的是(  )
分析:根據(jù)絕對(duì)值的代數(shù)意義,非負(fù)數(shù)的絕對(duì)值等于其本身,非正數(shù)的絕對(duì)值等于他的相反數(shù),將絕對(duì)值符號(hào)去掉化為分段函數(shù)的形式,可得答案.
解答:解:∵
1
2
(a+b+|a-b|)=
1
2
(a+b+a-b),(a≥b)
1
2
(a+b-a+b),(a<b)
=
a,(a≥b)
b,(a<b)
=max{a,b};
1
2
(a+b-|a-b|)=
1
2
(a+b+a-b),(a<b)
1
2
(a+b-a+b),(a≥b)
=
a,(a<b)
b,(a≥b)
=min{a,b}
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是絕對(duì)值函數(shù),根據(jù)絕對(duì)值的代數(shù)意義,將原式中絕對(duì)值符號(hào)去掉化為分段函數(shù)的形式,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)?a、b∈R,定義運(yùn)算“?”、“⊕”為:a?b=
a (a≥b)
 b (a<b)
a⊕b=
a (a<b)
 b (a≥b)

給出下列各式
①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx,②(2x?x2)-(2x⊕x2)=2x-x2
③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,④(2x?x2)÷(2x⊕x2)=2x÷x2
其中等式恒成立的是
 
.(將所有恒成立的等式的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)a,b∈R,定義:min{a,b}=
aa<b
ba≥b
,設(shè)函數(shù)f(x)=min{(x-1)2,|x+1|},x∈D=[-3,3]
(1)求f(-2),f(3)的值;
(2)在平面直角坐標(biāo)系內(nèi)作出該函數(shù)的大致圖象;
(3)就k的值討論關(guān)于x的方程f(x)=k解的個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省日照一中高三第七次階段復(fù)習(xí)達(dá)標(biāo)檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對(duì)?a、b∈R,定義運(yùn)算“?”、“⊕”為:
給出下列各式
①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx,②(2x?x2)-(2x⊕x2)=2x-x2,
③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,④(2x?x2)÷(2x⊕x2)=2x÷x2
其中等式恒成立的是    .(將所有恒成立的等式的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省日照市高三一輪復(fù)習(xí)驗(yàn)收數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對(duì)?a、b∈R,定義運(yùn)算“?”、“⊕”為:
給出下列各式
①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx,②(2x?x2)-(2x⊕x2)=2x-x2,
③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,④(2x?x2)÷(2x⊕x2)=2x÷x2
其中等式恒成立的是    .(將所有恒成立的等式的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案