【題目】我國古代《九章算術(shù)》中將上,下兩面為平行矩形的六面體稱為芻童.如圖的芻童有外接球,且,,,平面與平面間的距離為,則該芻童外接球的體積為( )

A.B.C.D.

【答案】C

【解析】

假設(shè)為芻童外接球的球心,連接,交于點(diǎn),連接,交于點(diǎn),由球的幾何性質(zhì)可知,,在同一條直線上,由題意可知, 平面,平面,設(shè),利用勾股定理和球的半徑相等的條件列式,求出的值,進(jìn)而求出外接球的半徑,即可求出體積.

解:假設(shè)為芻童外接球的球心,連接,交于點(diǎn),連接,交于點(diǎn),由球的幾何性質(zhì)可知,在同一條直線上,

由題意可知, 平面平面,.

設(shè),

中,,在矩形中,

.

.

.

中,,在矩形中,

.

.

.

設(shè)外接球的半徑

,解得.

.

.

則該芻童外接球的體積.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體中,,,,為其外接球球心,,,所成的角分別為,,.有下列結(jié)論:

①該四面體的外接球的表面積為,

②該四面體的體積為10,

其中所有正確結(jié)論的編號為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列,,…,,…,對于給定的,),記滿足不等式:,)的構(gòu)成的集合為

(Ⅰ)若數(shù)列,寫出集合;

(Ⅱ)如果,)均為相同的單元素集合,求證:數(shù)列,,…,,…為等差數(shù)列;

(Ⅲ)如果)為單元素集合,那么數(shù)列,,…,,…還是等差數(shù)列嗎?如果是等差數(shù)列,請給出證明;如果不是等差數(shù)列,請給出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】居民消費(fèi)價(jià)格指數(shù),簡稱CPI,是一個(gè)反映居民消費(fèi)價(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).某年的,以下是年居民消費(fèi)價(jià)格指數(shù)的柱形圖.

從圖中可知下列說法正確的是( )

A.年居民消費(fèi)價(jià)格總體呈增長趨勢

B.這十年中有些年份居民消費(fèi)價(jià)格增長率超過3%

C.2009年的居民消費(fèi)價(jià)格出現(xiàn)負(fù)增長

D.2011年的居民消費(fèi)價(jià)格最高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用黑白兩種顏色隨機(jī)地染如圖所示表格中6個(gè)格子,每格子染一種顏色,并且從左往右數(shù),不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子的染色方法種數(shù)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱柱中,EAD的中點(diǎn).

1)在線段上是否存在點(diǎn)F,使得平面平面?并說明理由;

2)設(shè),,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新中國昂首闊步地走進(jìn)2019年,迎來了她70歲華誕.某平臺(tái)組織了偉大的復(fù)興之路一新中國70周年知識問答活動(dòng),規(guī)則如下:共有30道單選題,每題4個(gè)選項(xiàng)中只有一個(gè)正確,每答對一題獲得5顆紅星,每答錯(cuò)一題反扣2顆紅星;若放棄此題,則紅星數(shù)無變化.答題所獲得的紅星可用來兌換神秘禮品,紅星數(shù)越多獎(jiǎng)品等級越高.小強(qiáng)參加該活動(dòng),其中有些題目會(huì)做,有些題目可以排除若干錯(cuò)誤選項(xiàng),其余的題目則完全不會(huì).

1)請問:對于完全不會(huì)的題目,小強(qiáng)應(yīng)該隨機(jī)從4個(gè)選項(xiàng)中選一個(gè)作答,還是選擇放棄?(利用統(tǒng)計(jì)知識說明理由)

2)若小強(qiáng)有12道題目會(huì)做,剩下的題目中,可以排除一個(gè)錯(cuò)誤選項(xiàng)、可以排除兩個(gè)錯(cuò)誤選項(xiàng)和完全不會(huì)的題目的數(shù)量比是.請問:小強(qiáng)在本次活動(dòng)中可以獲得最多紅星數(shù)的期望是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的所有棱長都相等,若與平面所成角等于,則平面與平面所成角的正弦值的取值范圍是( )

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案