)已知,A是拋物線y2=2x上的一動點,過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點,交拋物線于M.N兩點,交y軸于                  B.C兩點

      (1)當A點坐標為(8,4)時,求直線EF的方程;

      (2)當A點坐標為(2,2)時,求直線MN的方程;

      (3)當A點的橫坐標大于2時,求△ABC面積的最小值。

(1)∵DEFA四點共圓

EF是圓(x-1)2+y2=1及(x-1)(x-8)+y(y-4)=0的公共弦

∴EF的方程為7x+4y-8=0………………………………………………4分

(2)設AM的方程為y-2=k(x-2)

即kx-y+2-2k=0與圓(x-1)2+y2=1相切得

=1

∴k=

把y-2=(x-2)代入y2=2x得M(),而N(2,-2)

∴MN的方程為3x+2y-2=0………………………………………………8分

(3)設P(x0,y0),B(0,b),C(0,c),不妨設b>c,

直線PB的方程為y-b=,

即(y0-b)x-x0y+x0b=0

又圓心(1,0)到PB的距離為1,所以=1,故

(y0-b)2+x=(y0-b)2+2x0b(y0-b)+ xb2

又x0>2,上式化簡得(x0-2)b2+2y0b-x0=0

同理有(x0-2)c2+2y0c-x0=0

故b,c是方程(x0-2)t2+2y0t-x0=0的兩個實數(shù)根

所以b+c=,bc=,則(b-c)2

因為P(x0,y0)是拋物線上的點,所以有y=2x0,則

(b-c)2,b-c=,

∴SPBC(b-c)x0=x0-2++4≥2+4=8

當(x0-2)2=4時,上式取等號,此時x0=4,y=±2

因此SPBC的最小值為8…………………………………………………………13分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P是拋物線y=2x2+1上的動點,定點A(0,-1),若點M分
PA
所成的比為2,則點M的軌跡方程是
 
,它的焦點坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•鐘祥市模擬)已知,A是拋物線y2=2x上的一動點,過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點,交拋物線于M.N兩點,交y軸于B.C兩點
(1)當A點坐標為(8,4)時,求直線EF的方程;
(2)當A點坐標為(2,2)時,求直線MN的方程;
(3)當A點的橫坐標大于2時,求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年貴州省遵義市湄潭中學高三(上)第五次月考數(shù)學試卷(理科)(解析版) 題型:填空題

已知點P是拋物線y=2x2+1上的動點,定點A(0,-1),若點M分所成的比為2,則點M的軌跡方程是    ,它的焦點坐標是   

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:5.3 兩點間距離公式、線段的定比分點與圖形的平移(解析版) 題型:解答題

已知點P是拋物線y=2x2+1上的動點,定點A(0,-1),若點M分所成的比為2,則點M的軌跡方程是    ,它的焦點坐標是   

查看答案和解析>>

同步練習冊答案