【題目】在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于,兩點(diǎn),問是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說明理由.
【答案】(1)(2)存在,
【解析】
(1)把點(diǎn)的坐標(biāo)代入橢圓方程,利用橢圓中的關(guān)系和已知,可以求出橢圓方程;
(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.
解:(1)由已知可得:解得,,,
所以橢圓:.
(2)由已知可得,,,∴,∵,
設(shè)直線的方程為:,代入橢圓方程整理得
,設(shè),,
則,,
∵,∴.
即,
因?yàn)?/span>,,
即.
.
所以,或.
又時,直線過點(diǎn),不合要求,所以.
故存在直線:滿足題設(shè)條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,邊長,的中點(diǎn)為,現(xiàn)將沿對角線翻折(如圖),則在翻折的過程中.下列說法正確的是______.(填正確命題的序號)
①直線與直線所成的角為(,不重合時);
②三棱錐體積的最大值為;
③三棱錐外接球的表面積為;
④點(diǎn)運(yùn)動形成的軌跡為橢圓的一部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù))上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線與在原點(diǎn)出切線相同.
(1)求的單調(diào)區(qū)間和極值;
(2)若時,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)字不重復(fù),且個位數(shù)字與千位數(shù)字之差的絕對值等于2的四位數(shù)的個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,過直線上第一象限內(nèi)的一動點(diǎn)作圓的兩條切線,切點(diǎn)分別為,過兩點(diǎn)的直線與坐標(biāo)軸分別交于兩點(diǎn),則面積的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為滿足人們的閱讀需求,圖書館設(shè)立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應(yīng)區(qū)域.現(xiàn)隨機(jī)抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計(jì)如下(單位:本).
文學(xué)類專欄 | 科普類專欄 | 其他類專欄 | |
文學(xué)類圖書 | 100 | 40 | 10 |
科普類圖書 | 30 | 200 | 30 |
其他圖書 | 20 | 10 | 60 |
(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)文學(xué)類圖書分類正確的概率;
(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)圖書分類錯誤的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com