【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn).
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A1﹣AB﹣C的余弦值.

【答案】證明:(Ⅰ)∵AA1=A1C,且O為AC的中點(diǎn),∴A1O⊥AC,

又∵側(cè)面AA1C1C⊥底面ABC,交線為AC,且A1O平面AA1C1C,

∴A1O⊥平面ABC.

解:(Ⅱ)以O(shè)為原點(diǎn),OB,OC,OA1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系.

由已知可得O(0,0,0),A(0,﹣1,0), ,

,

設(shè)平面AA1B的一個(gè)法向量為

則有 ,

令x=1,得 ,z=1

…(8分)

∵A1O⊥平面ABC

∴平面ABC的一個(gè)法向量

又二面角A1﹣AB﹣C是銳角

∴二面角A1﹣AB﹣C的余弦值為


【解析】(Ⅰ)推導(dǎo)出A1O⊥AC,由此利用側(cè)面AA1C1C⊥底面ABC,能證明A1O⊥平面ABC.(Ⅱ)以O(shè)為原點(diǎn),OB,OC,OA1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用向量法能求出二面角A1﹣AB﹣C的余弦值.
【考點(diǎn)精析】利用直線與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且偶函數(shù)的定義域?yàn)?/span>,且當(dāng)時(shí), .若存在實(shí)數(shù),使得成立,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下判斷: ①f(x)= 與g(x)= 表示同一函數(shù);
②函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)最多有1個(gè);
③f(x)=x2﹣2x+1與g(t)=t2﹣2t+1是同一函數(shù);
④若f(x)=|x﹣1|﹣|x|,則f(f( ))=0.
其中正確判斷的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)時(shí)取得最小值,且函數(shù)的圖象在軸上截得的線段長為

(1)求函數(shù)的解析式;(2)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x3﹣ax+2=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.(2,+∞)
B.(3,+∞)
C.(0,3 )
D.(﹣∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于四面體,有以下命題:

1)若,則過向底面作垂線,垂足為底面的外心;

2)若 ,則過向底面作垂線,垂足為底面的內(nèi)心;

3)四面體的四個(gè)面中,最多有四個(gè)直角三角形;

4若四面體6條棱長都為1,則它的內(nèi)切球的表面積為.

其中正確的命題是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值為2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義在上且滿足下列兩個(gè)條件:

①對任意都有;

②當(dāng)時(shí),,

1)求,并證明函數(shù)上是奇函數(shù);

2)驗(yàn)證函數(shù)是否滿足這些條件;

3)若,試求函數(shù)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案