【題目】已知函數(shù)

(1)若,求曲線在點處的切線方程;

(2)若處取得極小值,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1時, ,利用導數(shù)幾何意義,求出函數(shù)在處的切線斜率,再求出切線方程;(2)對函數(shù)求導,令,討論的單調(diào)性,對 分情況討論,得出實數(shù)的取值范圍.

試題解析:(1)當時, , ,所以曲線在點處的切線方程為.

(2)由已知得,則

,則,

①當, 時, ,函數(shù)單調(diào)遞增,

所以當時, ,當時, ,

所以處取得極小值,滿足題意.

②當時, 時, ,函數(shù)單調(diào)遞增,

可得當時, 時, 當,

所以處取得極小值,滿足題意.

③當時,當時, ,函數(shù)單調(diào)遞增,

時, , 內(nèi)單調(diào)遞減,

所以當時, 單調(diào)遞減,不合題意.

④當時,即,當時, , 單調(diào)遞減,

,當時, 單調(diào)遞減,

所以處取得極大值,不合題意.

綜上可知,實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)當m=-1時,求AB;

(2)若AB,求實數(shù)m的取值范圍;

(3)若AB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)y= 的定義域、值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=3米,AD=2米.
(Ⅰ)要使矩形AMPN的面積大于32平方米,則DN的長應在什么范圍內(nèi)?
(Ⅱ)當DN的長度為多少時,矩形花壇AMPN的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實數(shù)m的值;
(2)當m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)f(x)的圖象經(jīng)過點(3,
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》有“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)有一根金箠,一頭粗,一頭細,在粗的一端截下1尺,重4斤;在細的一端截下1尺,重2斤;問依次每一尺各重多少斤?”根據(jù)上題的已知條件,若金箠由粗到細是依次等量減小的,則正中間一尺的重量為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,橢圓的長軸為短軸,且與有相同的離心率.

(1)求橢圓的方程;

(2)設為坐標原點,點分別在橢圓上, ,求直線的方程.

查看答案和解析>>

同步練習冊答案