【題目】如圖所示,直三棱柱中,是邊長為2等邊三角形,是的中點.
(1)求證:平面;
(2)若與平面所成角為,求與平面所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.在中,若,則
B.在銳角三角形中,不等式恒成立
C.在中,若,,則為等腰直角三角形
D.在中,若,,三角形面積,則三角形外接圓半徑為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某測量人員為了測量西江北岸不能到達的兩點,之間的距離,她在西江南岸找到一個點,從點可以觀察到點,;找到一個點,從點可以觀察到點,;找到一個點,從點可以觀察到點,;并測量得到數(shù)據(jù):,,,,,百米.
(1)求的面積;
(2)求,之間的距離的平方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F為拋物線C:x2=2py (p>0) 的焦點,點A(m,3)在拋物線C上,且|AF|=5,若點P是拋物線C上的一個動點,設(shè)點P到直線的距離為,設(shè)點P到直線的距離為.
(1)求拋物線C的方程;
(2) 求的最小值;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F為拋物線C:x2=2py (p>0) 的焦點,點A(m,3)在拋物線C上,且|AF|=5,若點P是拋物線C上的一個動點,設(shè)點P到直線的距離為,設(shè)點P到直線的距離為.
(1)求拋物線C的方程;
(2) 求的最小值;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,離心率為,且橢圓四個頂點構(gòu)成的菱形面積為.
(1)求橢圓C的方程;
(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,分別是橢圓 的長軸端點、短軸端點,為坐標(biāo)原點,若,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如果斜率為的直線交橢圓于不同的兩點 (都不同于點),線段的中點為,設(shè)線段的垂線的斜率為,試探求與之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com