如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使,得一簡單組合體如圖2示,已知分別為的中點.
   
圖1                              圖2
(1)求證:平面;
(2)求證:
(3)當多長時,平面與平面所成的銳二面角為?
(1)主要是得到(2)關鍵是證明平面,(3)

試題分析:(1)證明:連,∵四邊形是矩形,中點,
中點,                   
中,中點,則的中位線
       
平面,平面平面;
(其它證法,請參照給分)

(2)依題意知 且
平面
平面,∴,    
中點,∴
結合,知四邊形是平行四邊形
               
,∴ ∴,即 --8分
       ∴平面,
平面,  ∴.            
(3)解:如圖,分別以所在的直線為軸建立空間直角坐標系

,則
易知平面的一個法向量為,  
設平面的一個法向量為,
 故,即
,則,故           

依題意,,解得,                 
時,平面與平面所成的銳二面角為
點評:在立體幾何中,?嫉亩ɡ硎牵褐本與平面垂直的判定定理、直線與平面平行的判定定理。在求二面角的平面角時,常利用向量來求解。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,底面, 的中點,.

(1)求證:平面;
(2)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在四棱錐中,底面,面為正方形,為側棱上一點,上一點.該四棱錐的正(主)視圖和側(左)視圖如圖2所示.

(Ⅰ)求四面體的體積;
(Ⅱ)證明:∥平面
(Ⅲ)證明:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱的側棱與底面垂直,底面是等腰直角三角形,,側棱,分別是的中點,點在平面上的射影是的垂心

(1)求證:
(2)求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,

(I)求證
(II)設

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正四棱錐則的底面邊長為,高,則過點的球的半徑為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點,且BF平面ACE,AC與BD交于點G

(1)求證:AE平面BCE
(2)求證:AE//平面BFD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點,使//平面?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中正確的是
A.棱柱的側面可以是三角形
B.正方體和長方體都是特殊的四棱柱
C.所有的幾何體的表面都能展成平面圖形
D.棱柱的各條棱都相等

查看答案和解析>>

同步練習冊答案