【題目】已知橢圓 的離心率為 ,且橢圓 過(guò)點(diǎn) ,直線 過(guò)橢圓 的右焦點(diǎn) 且與橢圓 交于 兩點(diǎn).
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn) ,求證:若圓 與直線 相切,則圓 與直線 也相切.

【答案】解:(Ⅰ)設(shè)橢圓C的焦距為2c(c>0),依題意,
解得 ,c=1,故橢圓C的標(biāo)準(zhǔn)方程為 ;
(Ⅱ)證明:當(dāng)直線l的斜率不存在時(shí),直線l的方程為 ,M , N兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),點(diǎn)P(4,0)在x軸上,所以直線PM與直線PN關(guān)于x軸對(duì)稱(chēng),所以點(diǎn)O到直線PM與直線PN的距離相等,故若圓 與直線PM相切,則也會(huì)與直線PN相切;
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為 , ,
得:
所以 , ,
,

,
所以, ,于是點(diǎn)O到直線PM與直線的距離PN相等,
故若圓 與直線PM相切,則也會(huì)與直線PN相切;
綜上所述,若圓 與直線PM相切,則圓 與直線PN也相切
【解析】(1)利用已知條件列出關(guān)于a、b的方程組,即可得到橢圓C的標(biāo)準(zhǔn)方程。(2)根據(jù)題意對(duì)直線的斜率分類(lèi)討論,若圓與直線相切等價(jià)于kPM+kPN=0聯(lián)立方程借助韋達(dá)定理即可證明等式即可。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 則方程 的根的個(gè)數(shù)為( )
A.5
B.4
C.1
D.無(wú)數(shù)多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐 外接球的表面積為32 , ,三棱錐 的三視圖如圖所示,則其側(cè)視圖的面積的最大值為( )

A.4
B.
C.8
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的四個(gè)頂點(diǎn)組成的四邊形的面積為 ,且經(jīng)過(guò)點(diǎn)

(1)求橢圓 的方程;
(2)若橢圓 的下頂點(diǎn)為 ,如圖所示,點(diǎn) 為直線 上的一個(gè)動(dòng)點(diǎn),過(guò)橢圓 的右焦點(diǎn) 的直線 垂直于 ,且與 交于 兩點(diǎn),與 交于點(diǎn) ,四邊形 的面積分別為 .求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:
①命題“ ”的否定是:“ , ”;
②若樣本數(shù)據(jù) 的平均值和方差分別為 則數(shù)據(jù) 的平均值和標(biāo)準(zhǔn)差分別為 , ;
③兩個(gè)事件不是互斥事件的必要不充分條件是兩個(gè)事件不是對(duì)立事件;
④在 列聯(lián)表中,若比值 相差越大,則兩個(gè)分類(lèi)變量有關(guān)系的可能性就越大.
⑤已知 為兩個(gè)平面,且 , 為直線.則命題:“若 ,則 ”的逆命題和否命題均為假命題.
⑥設(shè)定點(diǎn) 、 ,動(dòng)點(diǎn) 滿足條件 為正常數(shù)),則 的軌跡是橢圓.其中真命題的個(gè)數(shù)為( )
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值為2,則空白判斷框中的條件可能為(
A.x>3
B.x>4
C.x≤4
D.x≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 是直角梯形, , , , , 平面

(Ⅰ) 上是否存在點(diǎn) 使 平面 ,若存在,指出 的位置并證明,若不存在,請(qǐng)說(shuō)明理由;(Ⅱ)證明: ;
(Ⅲ)若 ,求點(diǎn) 到平面 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)《中華人民共和國(guó)道路交通安全法》規(guī)定:“車(chē)輛駕駛員血液酒精溶度(單位mg/100ml)/在,屬于酒后駕駛;血液濃度不低于80,屬于醉酒駕駛!2017年“中秋節(jié)”晚9點(diǎn)開(kāi)始,濟(jì)南市交警隊(duì)在桿石橋交通崗前設(shè)點(diǎn),對(duì)過(guò)往的車(chē)輛進(jìn)行檢查,經(jīng)過(guò)4個(gè)小時(shí),共查處喝過(guò)酒的駕駛者60名,下圖是用酒精測(cè)試儀對(duì)這60名駕駛者血液中酒精溶度進(jìn)行檢測(cè)后所得結(jié)果畫(huà)出的頻率分布直方圖。

(1)求這60名駕駛者中屬于醉酒駕車(chē)的人數(shù)(圖中每組包括左端點(diǎn),不包括右端點(diǎn))

(2)若以各小組的中值為該組的估計(jì)值,頻率為概率的估計(jì)值,求這60名駕駛者血液的酒精濃度的平均值。

查看答案和解析>>

同步練習(xí)冊(cè)答案