本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(Ⅰ)選修4-2:矩陣與變換,
已知矩陣A=
01
a0
,矩陣B=
02
b0
,直線l1
:x-y+4=0經(jīng)矩陣A所對(duì)應(yīng)的變換得直線l2,直線l2又經(jīng)矩陣B所對(duì)應(yīng)的變換得到直線l3:x+y+4=0,求直線l2的方程.
(Ⅱ)選修4-4:坐標(biāo)系與參數(shù)方程,
求直線
x=-2+2t
y=-2t
被曲線
x=1+4cosθ
y=-1+4sinθ
截得的弦長(zhǎng).
(Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.
分析:(Ⅰ)先根據(jù)條件,可以求出矩陣A,B,從而可得變換公式,這樣就可以求出直線l2的方程.
(Ⅱ)曲線是圓,直線被圓截得的弦長(zhǎng),通常求出弦心距,利用勾股定理可求解;
(Ⅲ)將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為一次不等式求解即可.
解答:(Ⅰ)解:BA=
02
b0
01
a0
=
2a0
0b

∴l(xiāng)1變換到l3的變換公式為
x′=2ax
y′=by

∴2ax+by+4=0即直線l1:x-y+4=0,則有
2a=1
b=-1
,∴a=
1
2
,b=-1

A=
01
1
2
0
B=
02
-10

∴l(xiāng)1變換到l2的變換公式為
x′=y
y′=
1
2
x
,∴
x=2y′
y=x′

∵直線l1:x-y+4=0,
∴l(xiāng)2:2y′-x′+4=0
即x-2y-4=0
(Ⅱ)解:直線
x=-2+2t
y=-2t
的普通方程為:x+y+2=0…(2分)
曲線
x=1+4cosθ
y=-1+4sinθ
,即圓心為(1,-1),半徑為4的圓  …(4分)
則圓心(1,-1)到直線x+y+2=0的距離d=
|1-1+2|
12+12
=
2
…(5分)
設(shè)直線被曲線截得的弦長(zhǎng)為t,則t=2
42-(
2
)2=2
14
,
∴直線被曲線截得的弦長(zhǎng)為2
14
…(7分)
(Ⅲ)解:將絕對(duì)值符號(hào)去掉,進(jìn)行分類討論
x≥2
x+1+2x-4>6
-1<x<2
x+1-2x+4>6
x≤-1
-x-1-2x+4>6
…(3分)
∴x>3或x∈∅或x<-1…(6分)
∴x∈(-∞,-1)∪(3,+∞)…(7分)
點(diǎn)評(píng):高考中的選做題,通常是選取兩道題,矩陣問題涉及到矩陣的變換,參數(shù)方程問題要消參,不等式問題要學(xué)會(huì)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,請(qǐng)考生任選2題作答.
(1)選修4-2:矩陣與變換
已知a,b∈R,若M=
-1a
b3
所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
)

①將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
②判斷直線l和圓C的位置關(guān)系.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計(jì)算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點(diǎn)Q極坐標(biāo)為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是圓C上的任意一點(diǎn),求P、Q兩點(diǎn)距離的最小值.
(3)選修4-5:不等式選講
(I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設(shè)x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)已知矩陣M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩陣M的特征值和對(duì)應(yīng)的特征向量;(Ⅲ)計(jì)算M100β.
(2)曲線C的極坐標(biāo)方程是ρ=1+cosθ,點(diǎn)A的極坐標(biāo)是(2,0),求曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形的周長(zhǎng).
(3)已知a>0,求證:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

同步練習(xí)冊(cè)答案