分析:(I)再寫(xiě)一式,兩式相減,結(jié)合{an}是正項(xiàng)數(shù)列,可得數(shù)列是等差數(shù)列,從而可求數(shù)列{an}的通項(xiàng)公式;
(II)確定數(shù)列的通項(xiàng),利用基本不等式,結(jié)合裂項(xiàng)求和,即可證得結(jié)論.
解答:(I)解:∵
Sn=an2+an-∴
Sn-1=an-12+an-(n≥2)
兩式相減可得
an=(an2-an-12)+
(a
n-a
n-1)
∴(a
n+a
n-1)(a
n-a
n-1-2)=0
∵{a
n}是正項(xiàng)數(shù)列,∴a
n-a
n-1=2(n≥2)
∵
a1=S1=a12+a1-∴a
1=3
∴a
n=3+2(n-1)=2n+1;
(II)證明:∵
>0,
>0,且
≠∴
bn=+=
+
>
2=2
∴T
n>2n
∵b
n=
+
=2+2(
-)
∴T
n=2n+2(
-)+2(
-)+…+2(
-)=2n+2(
-)<2n+
∴
2n<Tn<2n+.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查裂項(xiàng)法的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.