【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國.某選拔賽后,隨機抽取100名選手的成績,按成績由低到高依次分為第1,2,3,4,5組,制成頻率分布直方圖如下圖所示:
(I)在第3、4、5組中用分層抽樣抽取5名選手,求第3、4、5組每組各抽取多少名選手;
(II)在(I)的前提下,在5名選手中隨機抽取2名選手,求第4組至少有一名選手被抽取的概率.
【答案】(I)2人、2人、1人;(II).
【解析】試題分析:(I)根據頻率分布直方圖可以求出3、4、5組的頻數(shù)分別為20、20、10,根據分層抽樣的原則:比例相同,可以得到抽取的人數(shù):3組2人;4組2人;5組1人;(Ⅱ)根據古典概型分別列舉出從五位選手中抽取兩位選手的總事件有10種,其中第4組至少有一名選手的事件有7,故概率為.
試題解析:(I)由頻率分布直方圖易知第3組的頻率為,從而第3組的頻數(shù)為,同理可得第4、5組的頻數(shù)分別為20、10,所以第3、4、5組共有50名選手.
利用分層抽樣在50名選手中抽取5名選手,每組抽取的人數(shù)分別為:
第3組: 人,第4組: 人,第5組: 人,
所以第3、4、5組分別抽取2人、2人、1人.
(Ⅱ)設第3組的2位選手為, ,第4組的2位選手為, ,第5組的1位選手為,則從這五位選手中抽取兩位選手有, , , , , , , , , ,共10種.其中第4組的2位選手, 中至少有一位選手入選的有: , , , , , , ,共有7種,所以第4組至少有一名選手的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣x,
(1)用分段函數(shù)的形式表示該函數(shù),并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域、單調區(qū)間(不要求證明);
(3)若對任意x∈R,不等式|2x﹣1|≥a+x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,定義橢圓上的點的“伴隨點”為.
(1)求橢圓上的點的“伴隨點”的軌跡方程;
(2)如果橢圓上的點的“伴隨點”為,對于橢圓上的任意點及它的“伴隨點”,求的取值范圍;
(3)當, 時,直線交橢圓于, 兩點,若點, 的“伴隨點”分別是, ,且以為直徑的圓經過坐標原點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點.
(I)證明:直線MN//平面CAB1;
(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家擬在2017年舉行促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)(單位:萬件)與年促銷費用(單位:萬元)()滿足( 為常數(shù)),如果不搞促銷活動,則該產品的年銷售量只能是1萬件.已知2017年生產該產品的固定投入為8萬元.每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).
(1)將2017年該產品的利潤(單位:萬元)表示為年促銷費用(單位:萬元)的函數(shù);
(2)該廠家2017年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=x3與y=( )x的圖象的交點為(x0 , y0),若x0所在的區(qū)間是(k,k+1)(k∈Z),則k= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知⊙: 與⊙: ,以, 分別為左右焦點的橢圓: 經過兩圓的交點。
(Ⅰ)求橢圓的方程;
(Ⅱ)、是橢圓上的兩點,若直線與的斜率之積為,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
求R(A∪B);
已知C={x|a<x<a+1},且CA,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com