【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,直線
被橢圓
截得的線段長(zhǎng)為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右頂點(diǎn)作互相垂直的兩條直線
分別交橢圓
于
兩點(diǎn)(點(diǎn)
不同于橢圓
的右頂點(diǎn)),證明:直線
過(guò)定點(diǎn)
.
【答案】(1);(2)
【解析】分析:(1)由橢圓的對(duì)稱性知兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,不妨設(shè)
在第一象限,由弦長(zhǎng)可得
,代入
,再結(jié)合
可解得
;
(2)只要設(shè)出直線方程:,把
代入橢圓方程可解得M點(diǎn)坐標(biāo),同理可解得N點(diǎn)坐標(biāo),由兩點(diǎn)求出直線MN的方程(注意分類討論MN與
垂直和不垂直兩種情形),通過(guò)直線方程可觀察出直線所過(guò)定點(diǎn).
詳解:(1)根據(jù)題意,設(shè)直線與題意交于
兩點(diǎn).不妨設(shè)
點(diǎn)在第一象限,又
長(zhǎng)為
,
∴,∴
,可得
,
又,
∴,故題意
的標(biāo)準(zhǔn)方程為
,
(2)顯然直線的斜率存在且不為0,設(shè)
,
由得
,∴
,
同理可得
當(dāng)時(shí),
,所以直線
的方程為
整理得,所以直線
當(dāng)時(shí),直線
的方程為
,直線也過(guò)點(diǎn)
所以直線過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為
(萬(wàn)元),其中固定成本為
萬(wàn)元,并且每生產(chǎn)
百臺(tái)的生產(chǎn)成本為
萬(wàn)元(總成本
固定成本
生產(chǎn)成本).銷售收入
(萬(wàn)元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫出利潤(rùn)函數(shù)的解析式(利潤(rùn)
銷售收入
總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于函數(shù)的判斷正確的是( 。
①的解集是
;
②極小值,
是極大值;
③沒(méi)有最小值,也沒(méi)有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若直線過(guò)點(diǎn)
,求直線
的極坐標(biāo)方程;
(2)若直線與曲線交于
兩點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( )
A.f(x)=
B.f(x)=x3
C.f(x)=( )x
D.f(x)=3x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了及時(shí)向群眾宣傳“十九大”黨和國(guó)家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個(gè)宣講站,讓群眾能在最短的時(shí)間內(nèi)到宣講站.設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)
及
的中點(diǎn)
處,
,
,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與
等距離的一點(diǎn)
處設(shè)一個(gè)宣講站,記
點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為
.
(Ⅰ)設(shè),將
表示為
的函數(shù);
(Ⅱ)試?yán)茫á瘢┑暮瘮?shù)關(guān)系式確定宣講站的位置,使宣講站
到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和
最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過(guò)棱AB的中點(diǎn)E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點(diǎn)F,G,H.
(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,…,第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒(méi)有療效的有6人,則第三組中有療效的人數(shù)為( )
A.6
B.8
C.12
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三名大學(xué)生參加學(xué)校組織的“國(guó)學(xué)達(dá)人”挑戰(zhàn)賽, 每人均有兩輪答題機(jī)會(huì),當(dāng)且僅當(dāng)?shù)谝惠啿贿^(guò)關(guān)時(shí)進(jìn)行第二輪答題.根據(jù)平時(shí)經(jīng)驗(yàn),甲、乙、丙三名大學(xué)生每輪過(guò)關(guān)的概率分別為,且三名大學(xué)生每輪過(guò)關(guān)與否互不影響.
(1)求甲、乙、丙三名大學(xué)生都不過(guò)關(guān)的概率;
(2)記為甲、乙、丙三名大學(xué)生中過(guò)關(guān)的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com