精英家教網 > 高中數學 > 題目詳情
如圖,F1,F2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的焦點,P為橢圓上的點,PF1⊥OX軸,且OP和橢圓的一條長軸頂點A和短軸頂點B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點,證明∠F1QF2
π
2

(3)過F1與OP垂直的直線交橢圓于M,N,若△M F2N的面積為20
3
,求橢圓方程.
分析:(1)根據題意可表示出MP坐標,進而表示出直線OP的斜率和AB的斜率利用二者相等求得b和c的關系進而求得a和c的關系,則離心率可得.
(2)利用橢圓的定義可表示出|F1Q|+|F2Q|,進而利用余弦定理表示出cos∠F1QF2,利用基本不等式可得cos∠F1QF2的范圍進而求得∠F1QF2的范圍.
(3)設出直線MN的方程,代入橢圓方程消去x整理后利用韋達定理表示出y1+y2和y1•y2,進而求得|y1-y2|代入三角形面積公式求得求得c,進而可分別求得a和b,則橢圓的方程可得.
解答:解:(1)易得 P(-c,
b2
a
),kOP=
b2
-ac
,kAB=-
b
a
,
-
b2
ac
=-
b
a
⇒b=c⇒a=
2
c
,
e=
c
a
=
2
2

(2)證明:由橢圓定義得:|F1Q|+|F2Q|=2a,
所以cos∠F1QF2=
|F1Q|2+|F2Q|2-|F1F2|2
2|F1Q||F2Q|

=
4a2-4c2-2|F1Q||F2Q|
2|F1Q||F2Q|
=
2b2
|F1Q||F2Q|
-1

因為|F1Q||F2Q|≤(
|F1Q|+|F2Q|
2
)
2
=a2
,
cos∠F1QF2
2b2
a2
-1=
2c2
2c2
-1=0

F1QF2
π
2

(3)解:設直線MN的方程為 y=
a
b
(x+c),即y=
2
(x+c)

代入橢圓方程消去x得:
(1-
1
2
y+c)
2
a2
+
y2
b2
=1

整理得:5y2-2
2
cy-2c2=0
,
y1+y2=
2
2
c
5
y1y2=-
2c2
5

(y1-y2)2=(
2
2
c
5
)
2
+
8c2
5
=
48c2
25

因為S△PF2Q=
1
2
•2c•|y1-y2|=
4
3
c2
5
=20
3
,
所以c2=25
因此a2=50,b2=25,
所以橢圓方程為
x2
50
+
y2
25
=1
點評:本題主要考查了橢圓的簡單性質,解決直線與圓錐曲線的位置關系一般的思路是將直線與圓錐曲線方程聯立,利用韋達定理找突破口.考查了學生綜合分析問題和計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•浦東新區(qū)二模)(1)設橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,F1,F2為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
3
2
S△DEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經過坐標原點O.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)設橢圓C1數學公式與雙曲線C2數學公式有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為數學公式.設“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值;
(3)由拋物線弧E1:y2=4x(0數學公式)與第(1)小題橢圓弧E2數學公式數學公式)所合成的封閉曲線為“盾圓E”.設過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求數學公式的取值范圍.

查看答案和解析>>

同步練習冊答案