【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計 | |
男生 | 30 | ||
女生 | 15 | ||
合計 | 120 |
(2)從被調(diào)查的對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
【答案】(1)表格見解析,有99%的把握認為對“線上教育是否滿意與性別有關(guān)”;(2)分布列見解析,
【解析】
(1)根據(jù)男生與女生的人數(shù)之比為11∶13,以及總?cè)藬?shù)120,可求出男,女生總?cè)藬?shù),即可完成列聯(lián)表,并根據(jù)獨立性檢驗的基本思想,求出的觀測值,對照臨界值表,即可判斷是否有把握;
(2)根據(jù)(1)可知,男生抽3人,女生抽5人,于是,離散型隨機變量 的可能取值為,并且服從超幾何分布,即可利用公式(),求出各概率,得到分布列,求出期望
(1)因為男生人數(shù)為:,所以女生人數(shù)為,
于是可完成列聯(lián)表,如下:
滿意 | 不滿意 | 總計 | |
男生 | 30 | 25 | 55 |
女生 | 50 | 15 | 65 |
合計 | 80 | 40 | 120 |
根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測值
,
所以有99%的把握認為對“線上教育是否滿意與性別有關(guān)”.
(2)由(1)可知男生抽3人,女生抽5人,
依題可知的可能取值為,并且服從超幾何分布,(),即
,,
,.
可得分布列為
0 | 1 | 2 | 3 | |
可得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若,求在處的切線方程;
(2)若對于任意的正數(shù),恒成立,求實數(shù)的值;
(3)若函數(shù)存在兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AD∥BC,BC=2AD,E,F分別為AD,BC的中點,AE=EF,.將四邊形ABFE沿EF折起,使平面ABFE⊥平面EFCD(如圖2),G是BF的中點.
(1)證明:AC⊥EG;
(2)在線段BC上是否存在一點H,使得DH∥平面ABFE?若存在,求的值;若不存在,說明理由;
(3)求二面角D-AC-F的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對給定的d∈N*,記由數(shù)列構(gòu)成的集合.
(1)若數(shù)列{an}∈Ω(2),寫出a3的所有可能取值;
(2)對于集合Ω(d),若d≥2.求證:存在整數(shù)k,使得對Ω(d)中的任意數(shù)列{an},整數(shù)k不是數(shù)列{an}中的項;
(3)已知數(shù)列{an},{bn}∈Ω(d),記{an},{bn}的前n項和分別為An,Bn.若|an+1|≤|bn+1|,求證:An≤Bn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,E、F分別為A1C1和BC的中點.
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F//平面ABE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為矩形,平面ABCD,E為PD的中點.
(1)證明:平面AEC;
(2)若,,,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)存在兩個極值點,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】未了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,,,,,整理得到如圖所示的頻率分布直方圖.
在這100人中不支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
年齡 | |||||
不支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 23 | 17 |
(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);
(2)由頻率分布直方圖,若在年齡,,的三組內(nèi)用分層抽樣的方法抽取12人做問卷調(diào)查,求年齡在組內(nèi)抽取的人數(shù);
(3)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的不支持態(tài)度存在差異?
\ | 45歲以下 | 45歲以上 | 總計 |
不支持 | |||
支持 | |||
總計 |
附:,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com