【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于點(diǎn) 的點(diǎn),直線與圓的另一個(gè)交點(diǎn)為.是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
【答案】(1) (2) 不存在直線,使得
【解析】
(1)由題意求出a,通過離心率求出c,然后求解橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn),,設(shè)直線的方程為,與橢圓方程聯(lián)立,利用弦長公式求出,利用垂徑定理求出,從而整理即可得到結(jié)果.
(1)因?yàn)闄E圓的左頂點(diǎn)在圓上,令,得,所以,
又離心率為,所以,所以,
所以,
所以的方程為.
(2)設(shè)點(diǎn),,設(shè)直線的方程為,
與橢圓方程聯(lián)立得
化簡得到,
因?yàn)?/span>為方程的一個(gè)根,
所以,所以,
所以.
因?yàn)閳A心到直線的距離為,
所以,
因?yàn)?/span>,
代入得到,
顯然,所以不存在直線,使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】校園準(zhǔn)備綠化一塊直徑為的半圓形空地,點(diǎn)在半圓圓弧上,△外的地方種草,△的內(nèi)接正方形為一水池(,在邊上),其余地方種花,若, ,設(shè)△的面積為,正方形面積為;
(1)用和表示和;
(2)當(dāng)固定,變化時(shí),求最小值及此時(shí)的角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場,根據(jù)市場調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 | 2 | 6 | 20 |
市場價(jià)y元 | 102 | 78 | 120 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價(jià)y與上市時(shí)間x的變化關(guān)系并說明理由:①;②;③;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)利用你選取的函數(shù),若存在,使得不等式成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式(為實(shí)數(shù))的解集為,集合.
(1)若,求的取值范圍;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(個(gè)月)和市場占有率()的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | |
0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)上述回歸方程,分析該款旗艦機(jī)型市場占有率的變化趨勢,并預(yù)測自上市起經(jīng)過多少個(gè)月,該款旗艦機(jī)型市場占有率能超過(精確到月).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動(dòng)點(diǎn).
(I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過的圖形面積;
(Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分,設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時(shí)乙的得分,求的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值及取到最小值時(shí)自變量x的集合;
(2)指出函數(shù)y=的圖象可以由函數(shù)y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,m]時(shí),函數(shù)y=f(x)的值域?yàn)?/span>,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線交拋物線于,兩點(diǎn).若線段的垂直平分線與軸交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com