【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼氣酒精含量閾值與檢驗》國家標準,新標準規(guī)定,車輛駕駛?cè)搜褐械木凭看笥诨虻扔?/span>20毫克/百毫升、小于80毫克/百毫升的行為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復試驗,喝一瓶啤酒后酒精在人體血液內(nèi)的變化規(guī)律“散點圖”如下:
該函數(shù)模型如下,
.
根據(jù)上述條件,回答以下問題:
(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?
(2)試計算喝1瓶啤酒后多少小時才可以駕車?(時間以整小時計)(參考數(shù)據(jù):)
【答案】(1)喝一瓶啤酒后1.5小時血液中的酒精達到最大值,最大值是44.42毫克/百毫升;(2)喝一瓶啤酒后6小時才可以駕車
【解析】
(1)由圖可知,當函數(shù)取得最大值時,,此時時,取得最大值,即可求得.
(2)由題意知當車輛駕駛?cè)藛T血液中的酒精小于20毫克/100毫升可以駕車,此時,解不等式,兩邊取對數(shù),即可求出..
(1)由圖可知,當函數(shù)取得最大值時,.
此時.
當時,即時,函數(shù)取得最大值為,
故喝一瓶啤酒后1.5小時血液中的酒精達到最大值,最大值是44.42毫克/百毫升,
(2)由題意知當車輛駕駛?cè)藛T血液中的酒精小于20毫克/100毫升可以駕車,此時,
由,得,
兩邊取自然對數(shù)得,
即,
∴,
故喝一瓶啤酒后6小時才可以駕車.
科目:高中數(shù)學 來源: 題型:
【題目】某校醫(yī)務(wù)室欲研究晝夜溫差大小與高三患感冒人數(shù)多少之間的關(guān)系,他們統(tǒng)計了2019年9月至2020年1月每月8號的晝夜溫差情況與高三因患感冒而就診的人數(shù),得到如下資料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
晝夜溫差 | 5 | 8 | 12 | 13 | 16 |
就診人數(shù) | 10 | 16 | 26 | 30 | 35 |
該醫(yī)務(wù)室確定的研究方案是先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.假設(shè)選取的是2019年9月8日與2020年1月8日的2組數(shù)據(jù).
(1)求就診人數(shù)關(guān)于晝夜溫差的線性回歸方程 (結(jié)果精確到0.01)
(2)若由(1)中所求的線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過3人,則認為得到的線性回歸方程是理想的,試問該醫(yī)務(wù)室所得線性回歸方程是否理想?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系.已知直線的極坐標方程為,曲線的極坐標方程為().
(Ⅰ)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(Ⅱ)已知直線與曲線交于,,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校計劃舉辦“國學”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學進行了國學素養(yǎng)測試,這10名同學的性別和測試成績(百分制)的莖葉圖如圖所示.
(1)分別計算這10名同學中,男女生測試的平均成績;
(2)若這10名同學中,男生和女生的國學素養(yǎng)測試成績的標準差分別為S1,S2,試比較S1與S2的大。ú槐赜嬎,只需直接寫出結(jié)果);
(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學中隨機選取一男一女兩名同學,求這兩名同學的國學素養(yǎng)測試成績均為優(yōu)良的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),函數(shù),其導數(shù)為
(1)當時,求的單調(diào)區(qū)間;
(2)函數(shù)是否存在零點?說明理由;
(3)設(shè)在處取得最小值,求的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學生在校月消費情況,隨機抽取了100名中學生進行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學生稱為“高消費群” .
(1)求m,n的值,并求這100名學生月消費金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認為“高消費群”與性別有關(guān)?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) A 、B 、Ai 為集合.
(1)滿足 A ∪ B ={a , b}的集合有序?qū)?/span>(A , B)有多少對 ? 為什么 ?
(2)滿足 A ∪ B ={a1 , a2 , …, }的集合有序?qū)?/span>(A , B)有多少對? 為什么?
(3)滿足的集合有序組有多少組? 為什么 ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?
(2)以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.若上的點對應的參數(shù)為,點在上,點為的中點,求點到直線距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com