用數(shù)學歸納法證明命題時,某命題左式為
1
2
+
1
3
+
1
4
+…+
1
2n-1
,則n=k+1與n=k時相比,左邊應添加的項為( 。
分析:n=k時,最后一項為
1
2k-1
,n=k+1時,最后一項為
1
2k+1-1
,由此可得由n=k變到n=k+1時,左邊增加的項即可.
解答:解:由題意,n=k時,最后一項為
1
2k-1
,n=k+1時,最后一項為
1
2k+1-1
,
∴由n=k變到n=k+1時,左邊增加了
1
2k
+
1
2k+1
+
1
2k+2
+L+
1
2k+1-1
,
故選B.
點評:本題考查數(shù)學歸納法,考查學生分析解決問題的能力,找出規(guī)律是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

16、用數(shù)學歸納法證明命題:
(n+1)×(n+2)×…×(n+n)=2n×1×3×…×(2n-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列說法
①若數(shù)列〔an〕的前n項和是Sn=an2+bn+c,其中abc是常數(shù),則數(shù)列〔an〕一定不是等差數(shù)列:
②若
AB
=3
a
CD
=-2
a
,且|
AD
|=|
BC
|,則四邊形ABCD是等腰梯形;
③“x=-1”是“x2-5x-6=0”的必要不充分條件;
④用數(shù)學歸納法證明命題:
1
2
+
1
4
+
1
8
+…+
1
2n
<1,在第二步由n=k到n=k+1時,不等式左邊增加了l項.
其中正確說法的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明命題“當n為正奇數(shù)時,xn+yn能被x+y整除”時,在驗證n=1正確后,歸納假設(shè)應寫成(    )

A.假設(shè)n=k(k∈N*)時,xk+yk能被x+y整除

B.假設(shè)n≤k(k≥1)時,xk+yk能被x+y整除

C.假設(shè)n=2k+1(k∈N*)時,x2k+1+y2k+1能被x+y整除

D.假設(shè)n=2k-1(k∈N*)時,x2k-1+y2k-1能被x+y整除

查看答案和解析>>

科目:高中數(shù)學 來源:2012年蘇教版高中數(shù)學選修2-2 2.3數(shù)學歸納法練習卷(解析版) 題型:填空題

用數(shù)學歸納法證明命題:,從“第步到步”時,兩邊應同時加上       

 

查看答案和解析>>

同步練習冊答案