已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時(shí),f(x)=ex(1-x);②函數(shù)f(x)有兩個(gè)零點(diǎn);③f(x)>0的解集為(-1,0)∪(1,+∞);④∀x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確命題的個(gè)數(shù)是( )
A.1 B.2
C.3 D.4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在梯形ABCD中,點(diǎn)E、F分別在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求證:(m+n)EF=mBC+nAD.
你能由此推導(dǎo)出梯形的中位線公式嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知集合A、B,定義集合A與B的一種運(yùn)算A⊕B,其結(jié)果如下表所示:
A | {1,2,3,4} | {-1,1} | {-4,8} | {-1,0,1} |
B | {2,3,6} | {-1,1} | {-4,-2,0,2} | {-2,-1,0,1} |
A⊕B | {1,4,6} | ∅ | {-2,0,2,8} | {-2} |
按照上述定義,若M={-2 011,0,2 012},N={-2 012,0,2 013},則M⊕N=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對(duì)數(shù)的底數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某高校組織自主招生考試,其有2 000名學(xué)生報(bào)名參加了筆試,成績均介于195分到275分之間,從中隨機(jī)抽取50名同學(xué)的成績進(jìn)行統(tǒng)計(jì),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組[195,205),第二組[205,215),……,第八組[265,275).如圖是按上述分組方法得到的頻率分布直方圖.
(1)從這2 000名學(xué)生中,任取1人,求這個(gè)人的分?jǐn)?shù)在255~265之間的概率約是多少?
(2)求這2 000名學(xué)生的平均分?jǐn)?shù);
(3)若計(jì)劃按成績?nèi)? 000名學(xué)生進(jìn)入面試環(huán)節(jié),試估計(jì)應(yīng)將分?jǐn)?shù)線定為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,角α的頂點(diǎn)是坐標(biāo)原點(diǎn),始邊為x軸的正半軸,終邊與單位圓O交
于點(diǎn)A(x1 ,y1 ),α∈.將角α終邊繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)
,交單位圓于點(diǎn)B(x2,y2).
(1)若x1=,求x2;
(2)過A,B作x軸的垂線,垂足分別為C,D,記△AOC及 △BOD的面積分別為S1,S2,且S1=S2,求tanα的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com