【題目】已知函數(shù)f(x)=3x+λ3﹣x(λ∈R).
(1)當λ=﹣4時,求函數(shù)f(x)的零點;
(2)若函數(shù)f(x)為偶函數(shù),求實數(shù)λ的值;
(3)若不等式f(x)≤6在x∈[0,2]上恒成立,求實數(shù)λ的取值范圍.

【答案】解:(1)當λ=﹣4時,f(x)=3x﹣43﹣x ,
令f(x)=0,得3x﹣43﹣x=0,
即(3x2﹣4=0,解得x=log32.
故函數(shù)f(x)的零點為log32;
(2)∵f(x)為偶函數(shù),∴f(﹣x)=f(x).
∴3﹣x+λ3x=3x+λ3﹣x , 即(1﹣λ)(3﹣x﹣3x)=0.
又∵3﹣x﹣3x不恒為零,
∴1﹣λ=0,即λ=1;
(3)由f(x)≤6,得3x+λ3﹣x≤6,

令t=3x∈[1,9],原不等式等價于t+在t∈[1,9]恒成立.
亦即λ≤﹣t2+6t在t∈[1,9]上恒成立.
令g(t)=﹣t2+6t,t∈[1,9].
當t=9時,g(t)有最小值g(9)=﹣27.
∴λ≤﹣27.
【解析】(1)把λ=﹣4代入函數(shù)解析式,求解指數(shù)方程求得函數(shù)f(x)的零點;
(2)直接利用偶函數(shù)的性質(zhì)列式求得λ的值;
(3)由不等式f(x)≤6在x∈[0,2]上恒成立,分離參數(shù)λ,換元后利用配方法求得最小值得答案.
【考點精析】認真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱ABC﹣A1B1C1中,點D是棱BC的中點.
求證:(1)AD⊥C1D;
(2)A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=的定義域為A,集合B={x|(x﹣m﹣3)(x﹣m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實數(shù)m的值;
(3)若CRB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過20萬元時,按銷售利潤的20%進行獎勵;當銷售利潤超過20萬元時,若超出部分為A萬元,則超出部分按2log5(A+2)進行獎勵,沒超出部分仍按銷售利潤的20%進行獎勵.記獎金總額為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出該公司激勵銷售人員獎勵方案的函數(shù)表達式;
(2)如果業(yè)務員老張獲得8萬元的獎勵,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的半徑為,圓心在軸正半軸上,直線與圓相切.

1)求圓的方程;

(2)過點的直線與圓交于不同的兩點, 且為時,求: 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱中, ,側(cè)面底面 的中點, .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=(弦×矢+矢2).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經(jīng)驗公式計算所得弧田面積與實際面積之間存在誤差.現(xiàn)有圓心角為π,弦長等于9米的弧田.按照《九章算術》中弧田面積的經(jīng)驗公式計算所得弧田面積與實際面積的差為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車的出現(xiàn)方便了人們的出行,深受市民的喜愛.為調(diào)查某校大學生對共享單車的使用情況,從該校8000名學生隨機抽取了100位同學進行調(diào)查,得到這100名同學每周使用共享單車的時間(單位:小時)頻率分布直方圖.

(1)已知該校大一學生有2400人,求抽取的100名學生中大一學生人數(shù);

(2)根據(jù)頻率分布直方圖求該校大學生每周使用共享單車的平均時間.

(3)從抽取的100個樣本中,用分層抽樣的方法抽取使用共享單車時間超過6小時同學5人,再從這5人中任選2人,求這2人使用共享單車時間都不超過8小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)f(x)=x2+x,
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的增函數(shù),h(x)= (f(x)≠1),問是否存在實數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案