函數(shù)f(x)=sinx.
(1)令f1(x)=f′(x),fn+1(x)=fn′(x),(n∈N*),求f2014(x)的解析式;
(2)若f(x)+1≥ax+cosx在[0,π]上恒成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)問(wèn)中利用函數(shù)的周期性不難求出;(Ⅱ)問(wèn)中先將不等式轉(zhuǎn)化成函數(shù)利用導(dǎo)數(shù),討論a,進(jìn)而求出a的取值范圍.
解答: 解:(Ⅰ)由題意得:f1(x)=cosx,f2(x)=-sinx,f3(x)=-cosx,f4(x)=sinx,…,周期為4,
∴f2014(x)=f503×4+2(x)=f2(x)=-sinx.
(Ⅱ)設(shè)g(x)=sinx+1-ax-cosx,g′(x)=cosx-a+sinx=
2
sin(x+
π
4
)-a.
∵x∈[0,π],∴
2
sin(x+
π
4
)∈[-1,
2
].
當(dāng)a≤-1時(shí),g′(x)≥0在[0,π]上恒成立,
∴g(x)≥g(x)min=g(0)=0成立,
故a≤-1;
當(dāng)a
2
時(shí),g′(x)≤0在[0,π]上恒成立,g(x)=g(π)=2-πa≥0,得a
2
π
,無(wú)解.
當(dāng)-1<a<
2
時(shí),則存在x0∈(0,π]使得x∈(0,x0)時(shí),g(x)是增函數(shù),x∈(x0,π]時(shí),g(x)是減函數(shù),
故g(x)min=g(0),或g(x)min=g(π),
g(0)≥0
g(π)≥0
,解得:a
2
π
,
故-1<a
2
π

綜上所述:a
2
π
點(diǎn)評(píng):本題是一道關(guān)于導(dǎo)數(shù)應(yīng)用的綜合型題目,不管問(wèn)題怎么變化,關(guān)于導(dǎo)數(shù)最基本的知識(shí)點(diǎn)要牢牢掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,sin(α+
π
4
)=
2
10
,則sinα的值是( 。
A、
3
5
B、
7
2
10
C、-
2
10
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=axn+1+bxn(x>0),n為正整數(shù),a,b均為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y-1=0.
(Ⅰ)求a、b值;
(Ⅱ)求函數(shù)f(x)的最大值;
(Ⅲ)證明:對(duì)任意的x∈(0,+∞)都有nf(x)<
1
e
.(e為自然對(duì)數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)的和為Sn,且點(diǎn)(n+1,
1
Sn+n+3
)在函數(shù)y=
1
2x+1
的圖象上,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a≤1,x≥1,求證:(x+1)ln(x+1)≥ax.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:sin(π+θ)=-
1
3
,求值:
cos(3π+θ)
cos(-θ)[cos(π-θ)-1]
+
cos(θ-2π)
cos2θsin
3
2
π+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(a,b)關(guān)于直線x+y=0對(duì)稱的點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ln(x2-x-2)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案