【題目】如圖,四棱錐的底面是平行四邊形,的中點(diǎn),,.

1)求證:平面;

2)若,點(diǎn)在側(cè)棱上,且,二面角的大小為,求直線與平面所成角的正弦值.

【答案】(1)證明見解析(2)

【解析】

1)設(shè)的中點(diǎn),連結(jié),可證,由,又由,即可得證;

2)以為原點(diǎn),方向?yàn)?/span>軸的正方向,建立空間直角坐標(biāo)系,利用空間向量法求出線面角的正弦值.

解:(1)證明:平行四邊形中,設(shè)的中點(diǎn),連結(jié),

因?yàn)?/span>的中點(diǎn),所以,

又由,得,

所以,平行四邊形中,,則,

又由,且,平面平面,

平面

2)由(1)知平面

平面,

于是平面平面,連結(jié)

,可得

,所以平面

,所以平面

,

故二面角的平面角為,

由此得

為原點(diǎn),方向?yàn)?/span>軸的正方向,建立空間直角坐標(biāo)系,

,可知點(diǎn),

,

設(shè)平面的法向量為

,

,

設(shè)直線與平面所成角為,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比為 q的等比數(shù)列,且a1,a3,a2成等差數(shù)列.

)求q的值;

)設(shè){bn}是以2為首項(xiàng),q為公差的等差數(shù)列,其前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),比較Snbn的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離.

(1)求拋物線的方程;

(2)過點(diǎn)引圓的兩條切線,切線與拋物線的另一交點(diǎn)分別為,線段中點(diǎn)的橫坐標(biāo)記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如圖所示:

(1)現(xiàn)從去年的消費(fèi)金額超過3200元的消費(fèi)者中隨機(jī)抽取2人,求至少有1位消費(fèi)者,其去年的消費(fèi)者金額在的范圍內(nèi)的概率;

(2)針對(duì)這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會(huì)制,詳情如下表:

預(yù)計(jì)去年消費(fèi)金額在內(nèi)的消費(fèi)者今年都將會(huì)申請(qǐng)辦理普通會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理銀卡會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理金卡會(huì)員,消費(fèi)者在申請(qǐng)辦理會(huì)員時(shí),需一次性繳清相應(yīng)等級(jí)的消費(fèi)金額,該健身機(jī)構(gòu)在今年底將針對(duì)這些消費(fèi)者舉辦消費(fèi)返利活動(dòng),現(xiàn)有如下兩種預(yù)設(shè)方案:

方案1:按分層抽樣從普通會(huì)員,銀卡會(huì)員,金卡會(huì)員中總共抽取25位“幸運(yùn)之星”給予獎(jiǎng)勵(lì):

普通會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì)500元;銀卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì)600元;金卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì)800元.

方案二:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:從一個(gè)裝有3個(gè)白球、2個(gè)紅球(球只有顏色不同)的箱子中,有放回地摸三次球,每次只能摸一個(gè)球,若摸到紅球的總數(shù)為2,則可獲得200元獎(jiǎng)勵(lì)金;若摸到紅球的總數(shù)為3,則可獲得300元獎(jiǎng)勵(lì)金;其他情況不給予獎(jiǎng)勵(lì). 規(guī)定每位普通會(huì)員均可參加1次摸獎(jiǎng)游戲;每位銀卡會(huì)員均可參加2次摸獎(jiǎng)游戲;每位金卡會(huì)員均可參加3次摸獎(jiǎng)游戲(每次摸獎(jiǎng)的結(jié)果相互獨(dú)立)

請(qǐng)你預(yù)測(cè)哪一種返利活動(dòng)方案該健身機(jī)構(gòu)的投資較少?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.

(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場(chǎng)調(diào)研,求甲商家被抽到的概率;

(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱長(zhǎng)為1的正方體中,點(diǎn)、分別在線段、上運(yùn)動(dòng)(不包括線段端點(diǎn)),且.以下結(jié)論:①;②若點(diǎn)、分別為線段、的中點(diǎn),則由線確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結(jié)論為______.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬元、100萬元、50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤(rùn)的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.

請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線交于兩點(diǎn),不與軸垂直,圓.

(1)若點(diǎn)在橢圓上,點(diǎn)在圓上,求的最大值;

(2)若過線段的中點(diǎn)且垂直于的直線過點(diǎn),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒   次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

查看答案和解析>>

同步練習(xí)冊(cè)答案