在正方體AC1中,E、F分別為AB和CD的中點,則異面直線A1E與BF所成角的余弦值為( )
A.-
B.
C.-
D.
【答案】分析:要求兩條異面直線所成的角,根據(jù)正方形的性質(zhì)作出ED,則完成了直線的平移,把兩條異面直線放到具有公共點的位置,得到兩條異面直線所成的角,在三角形中利用余弦定理得到結(jié)果.
解答:解:連接ED,由正方體的性質(zhì)知BF∥DE,
∴異面直線A1E與BF所成角是∠A1ED,
設(shè)正方體的棱長是1,
,
∴由余弦定理知cos∠A1ED==


故選B.
點評:本題考查異面直線所成的角,本題是一個典型的題目,通過平移得到角,在在一個可解的三角形中求出角,按照一畫二證三求的過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在正方體AC1中,E是CD的中點,連接AE并延長與BC的延長線交于點F,連接BE并延長交AD的延長線于點G,連接FG.
求證:直線FG?平面ABCD且直線FG∥直線A1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體AC1中,E、F分別為AB和CD的中點,則異面直線A1E與BF所成角的余弦值為( 。
A、-
1
5
B、
1
5
C、-
1
5
1
5
D、
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044

如下圖所示,在正方體AC1中,E、F分別為對角線BD1和棱CC1的中點,求平面EFD1與底面AC所成銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):7.3 空間點、直線、平面之間的位置關(guān)系(1)(解析版) 題型:解答題

在正方體AC1中,E是CD的中點,連接AE并延長與BC的延長線交于點F,連接BE并延長交AD的延長線于點G,連接FG.
求證:直線FG?平面ABCD且直線FG∥直線A1B1

查看答案和解析>>

同步練習(xí)冊答案