如圖所示,等腰△ABC的底邊AB=6,高CD=3,點E是線段BD上異于點B、D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(1)求的表達式;
(2)當(dāng)x為何值時,取得最大值?
(3)當(dāng)V(x)取得最大值時,求異面直線AC與PF所成角的余弦值
(1);
(2)取得最大值.
(3)
(1)
;
(2),時, 時, 
取得最大值.
(3)以E為空間坐標(biāo)原點,直線EF為軸,直線EB為軸,直線EP為軸建立空間直角坐標(biāo)系,則;
,設(shè)異面直線AC與PF夾角是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,平面平面.
(1)證明:平面;
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的多面體中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB//平面DEG;
(2)求證:BDEG;
(3)求二面角C—DF—E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形與梯形所在的平面互相垂直,,,的中點.
(1)求證:∥平面;
(2)求證:平面平面
(3)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC

(1)證明:平面ADB⊥平面BDC;
(2)設(shè)E為BC的中點,求夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體中,在棱上.

(1)求異面直線所成的角;
(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在z軸上到點A(1,0,2)與點B(1,-3,1)的距離相等的點的坐標(biāo)是(  )
A.(-3,0,0)B.(0,3,0)C.(0,0,-3)D.(0,0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,M、N分別為棱AA1和BB1的中點,則sin〈〉的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在如圖所示的空間直角坐標(biāo)系中,一個四面體的頂點坐標(biāo)分別是(0,0,2),(2,2,0),(1,2,1),(2,2,2),給出編號①、②、③、④的四個圖,則該四面體的正視圖和俯視圖分別為(   )
A.①和②B.③和①C.④和③D.④和②

查看答案和解析>>

同步練習(xí)冊答案