分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)結(jié)合(Ⅰ)得到函數(shù)f(x)在x∈[-a,+∞)上f(x)≥f(-2),而x∈(-∞,-a)時,f(x)=ex[x(x+a)+a]>0,從而求出f(x)的最小值是f(-2);法二:根據(jù)函數(shù)的單調(diào)性求出f(x)的最小值是f(-2)即可.
解答 解:(Ⅰ)f′(x)=ex(x+2)(x+a),
由f′(x)=0,解得:x=-2或x=-a,
①-a=-2即a=2時,f′(x)=ex(x+2)2≥0恒成立,
∴函數(shù)f(x)在R遞增;
②-a>-2即a<2時,x,f′(x),f(x)的變化如下:
x | (-∞,-2) | -2 | (-2,-a) | -a | (-a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 遞減 | 遞增 |
x | (-∞,-a) | -a | (-a,-2) | -2 | (-2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 遞減 | 遞增 |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=152−x−1 | B. | y=(12)1-2x | C. | y=√(12)x−1 | D. | y=√1−2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (−∞,1),(43,4) | C. | (0,43) | D. | (0,1),(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com