已知m∈R,復(fù)數(shù)z=
m(m+2)
m-1
+(m2+2m-3)i
,若
.
z
=
1
2
+4i
,則m=
-1
-1
分析:根據(jù)所給的復(fù)數(shù)的共軛復(fù)數(shù),寫出這個復(fù)數(shù)的代數(shù)形式,根據(jù)復(fù)數(shù)相等的充要條件寫出復(fù)數(shù)的實部和虛部分別相等,得到關(guān)于m的方程組,得到結(jié)果.
解答:解:∵
.
z
=
1
2
+4i
,
∴z=
1
2
-4i
m(m+2)
m-1
=
1
2
m2+2m-3=-4⇒m=-1

故答案為:-1
點評:本題考查復(fù)數(shù)的實部、虛部的定義,復(fù)數(shù)與它的共軛復(fù)數(shù)之間的關(guān)系,本題解題的關(guān)鍵是解出關(guān)于m的方程組,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,復(fù)數(shù)z=
m(m-2)m-1
+(m2+2m-3)i
,若z對應(yīng)的點位于復(fù)平面的第二象限,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,復(fù)數(shù)z=
m-2m-1
+(m2+2m-3)i
,當(dāng)m為何值時.
(1)z∈R;
(2)z是純虛數(shù); 
(3)z對應(yīng)的點位于復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.
(Ⅰ)實數(shù)m取什么值時?復(fù)數(shù)z為純虛數(shù).
(Ⅱ)實數(shù)m取值范圍是什么時?復(fù)數(shù)z對應(yīng)的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,復(fù)數(shù)z=
m(m+2)
m-1
+(m2+2m-3)i
,當(dāng)m為何值時,
(1)z∈R;  (2)z是虛數(shù);  (3)z是純虛數(shù); (4)
.
z
=
1
2
+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,復(fù)數(shù)z=m2+4m+3+(m2+2m-3)i,當(dāng)m=
-1
-1
時,z是純虛數(shù).

查看答案和解析>>

同步練習(xí)冊答案