年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù),的兩個極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時,求函數(shù)圖象的對稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,若能表示成一個奇函數(shù)和一個偶函數(shù)的和.
(Ⅰ)求和的解析式;
(Ⅱ)若和在區(qū)間上都是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知:函數(shù)是定義在上的偶函數(shù),當(dāng)時,為實(shí)數(shù)).
。1)當(dāng)時,求的解析式;
。2)若,試判斷上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)有最大值1?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
已知:函數(shù)(a、b、c是常數(shù))是奇函數(shù),且滿足.
(1)求a、b、c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0,)上的單調(diào)性并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
醫(yī)學(xué)上為研究某種傳染病傳播過程中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實(shí)驗(yàn),經(jīng)檢測,病毒細(xì)胞在體內(nèi)的總數(shù)與天數(shù)的關(guān)系記錄如下表.已知該種病毒細(xì)胞在小白鼠體內(nèi)的個數(shù)超過的時候小白鼠將死亡.但注射某種藥物,將可殺死此時其體內(nèi)該病毒細(xì)胞的.
(Ⅰ) 為了使小白鼠在實(shí)驗(yàn)過程中不死亡,第一次最遲應(yīng)在何時注射該種藥物?(精確到天)
(Ⅱ)第二次最遲應(yīng)在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為。
(1)求證P的縱坐標(biāo)為定值; (4分)
(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和; (5分)
(3)若m∈N時,不等式<橫成立,求實(shí)數(shù)a的取值范圍。(3分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com