(本題滿分10分)
已知是奇函數(shù)
⑴、求的定義域;
⑵、求的值;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)函數(shù),的兩個極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時,求函數(shù)圖象的對稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,若能表示成一個奇函數(shù)和一個偶函數(shù)的和.
(Ⅰ)求的解析式;
(Ⅱ)若在區(qū)間上都是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
  已知:函數(shù)是定義在上的偶函數(shù),當(dāng)時,為實(shí)數(shù)).
 。1)當(dāng)時,求的解析式;
 。2)若,試判斷上的單調(diào)性,并證明你的結(jié)論;
  (3)是否存在,使得當(dāng)有最大值1?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
已知:函數(shù)(a、b、c是常數(shù))是奇函數(shù),且滿足
(1)求a、b、c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0,)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
醫(yī)學(xué)上為研究某種傳染病傳播過程中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實(shí)驗(yàn),經(jīng)檢測,病毒細(xì)胞在體內(nèi)的總數(shù)與天數(shù)的關(guān)系記錄如下表.已知該種病毒細(xì)胞在小白鼠體內(nèi)的個數(shù)超過的時候小白鼠將死亡.但注射某種藥物,將可殺死此時其體內(nèi)該病毒細(xì)胞的.

(Ⅰ) 為了使小白鼠在實(shí)驗(yàn)過程中不死亡,第一次最遲應(yīng)在何時注射該種藥物?(精確到天)
(Ⅱ)第二次最遲應(yīng)在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)
(參考數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為
(1)求證P的縱坐標(biāo)為定值;   (4分)
(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和;    (5分)
(3)若m∈N時,不等式橫成立,求實(shí)數(shù)a的取值范圍。(3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)
討論a,b的取值對一次函數(shù)y=ax+b單調(diào)性和奇偶性的影響,并畫出草圖。

查看答案和解析>>

同步練習(xí)冊答案