【題目】設(shè)a , b , c為正數(shù),且不全相等.求證: .
【答案】證明:本題考查三維形式的柯西不等式的應(yīng)用.解答本題需要構(gòu)造兩組數(shù)據(jù) , , ; , ,然后利用柯西不等式解決.
構(gòu)造兩組數(shù) , , ; ,,則由柯西不等式得
,①
即 ,
于是 .
由柯西不等式知,①中有等號成立 .
因題設(shè),a , b , c不全相等,故①中等號不成立,
于是 .
【解析】本題主要考查了一般形式的柯西不等式,解決問題的關(guān)鍵是柯西不等式的結(jié)構(gòu)特征可以記為 ,其中ai , bi∈R+(i=1,2,…,n),在使用柯西不等式時(shí)(要注意從整體上把握柯西不等式的結(jié)構(gòu)特征),準(zhǔn)確地構(gòu)造公式左側(cè)的兩個(gè)數(shù)組是解決問題的關(guān)鍵.
【考點(diǎn)精析】關(guān)于本題考查的一般形式的柯西不等式,需要了解一般形式的柯西不等式:才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2bsin A. (Ⅰ)求角B的大;
(Ⅱ)若a= ,c=5,求△ABC的面積及b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10、15、…這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16、25、…這樣的數(shù)稱為“正方形數(shù)”.從如圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和,下列等式中,符合這一規(guī)律的是( )
A.16=3+13
B.25=9+16
C.36=10+26
D.49=21+28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|x+2|+|x﹣2|<18的解集為A.
(1)求A;
(2)若a,b∈A,x∈(0,+∞),不等式a+b<x +m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù) p 滿足不等式(2p+1)(p+2)<0 ,用反證法證明:關(guān)于 x 的方程x2-2x+5-p2=0 無實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量a=(4cos α , sin α),b=(sin β , 4cos β),若tan αtan β=16,求證:a//b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,數(shù)列{an}的前n項(xiàng)的和記為Sn .
(1)求S1 , S2 , S3的值,猜想Sn的表達(dá)式;
(2)請用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com