設(shè)a∈R,f(x)=是奇函數(shù),
(1)求a的值;
(2)如果g(n)=(n∈N+),試比較f(n)與g(n)的大小(n∈N+).
思路解析:∵(1)f(x)是定義在R上的奇函數(shù), ∴f(0)=0,故a=1. (2)f(n)-g(n)=. 只要比較2n與2n+1的大。 當(dāng)n=1,2時(shí),f(n)<g(n);當(dāng)n≥3時(shí),2n>2n+1,f(n)>g(n). 下面證明,n≥3時(shí),2n>2n+1,即f(x)>g(x). 、賜=3時(shí),23>2×3+1,顯然成立, 、诩僭O(shè)n=k(k≥3,k∈N)時(shí),2k>2k+1,那么n=k+1時(shí),2k+1=2×2k>2(2k+1). 2(2k+1)-[2(k+1)+1]=4k+2-2k-3=2k-1>0(∵k≥3), 有2k+1>2(k+1)+1. ∴n=k+1時(shí),不等式也成立,由①②可以斷定,n≥3,n∈N時(shí),2n>2n+1. 結(jié)論:n=1,2時(shí),f(n)<g(n);當(dāng)n≥3,n∈N時(shí),f(n)>g(n). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:黑龍江省大慶實(shí)驗(yàn)中學(xué)2012屆高三10月月考數(shù)學(xué)理科試題 題型:022
設(shè)
a∈R,f(x)=cosx(asinx-cosx)+cos2(-x)滿足f(-)=f(0),則函數(shù)f(x)在[]上的最大值為________.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山西省大同一中2008-2009學(xué)年度高三上學(xué)期期中考試數(shù)學(xué)試卷(理) 題型:044
設(shè)a∈R,f(x)=(x∈R).
(1)確定a的值,使f(x)為奇函數(shù);
(2)當(dāng)f(x)為奇函數(shù)時(shí),對(duì)于給定的正實(shí)數(shù)k,解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江西省宜春市高安中學(xué)2012屆高三第一次段考數(shù)學(xué)理科試題 題型:044
設(shè)a∈R,f(x)=cosx(asinx-cosx)+cos2(-x)滿足f(-)=f(0),求函數(shù)f(x)在[,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com