為準線的拋物線的標準方程為(     )
A.B.C.D.
A

試題分析:根據(jù)題意,由于是拋物線的準線可知焦點在x軸上,那么結(jié)合開口向右,可知 ,故答案為A.
點評:解決的關鍵是根據(jù)準線方程確定焦點的位置,然后結(jié)合拋物線的方程來得到求解。屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0) 的左、右焦點,過F1的直線與的左、右兩支分別交于A,B兩點.若 | AB | : | BF2 | : | AF2 |=3 : 4 : 5,則雙 曲線的離心率為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知正三角形AOB的頂點A,B在拋物線上,O為坐標原點,則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與雙曲線有共同的漸近線,且經(jīng)過點的雙曲線方程是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線經(jīng)過拋物線的焦點F,且與拋物線相交于A、B兩點.

(1)若,求點A的坐標;
(2)若直線的傾斜角為,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的準線與軸交于點,點在拋物線對稱軸上,過可作直線交拋物線于點、,使得,則的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與拋物線相切傾斜角為的直線軸和軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為
A.4                B.2            C.2            D. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的兩個焦點分別為,過作橢圓長軸的垂線交橢圓于點,
為等腰直角三角形,則橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案