已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an2an求數(shù)列{bn}前n項(xiàng)和.
考點(diǎn):數(shù)列的求和,等差數(shù)列的前n項(xiàng)和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)數(shù)列{an}是等差數(shù)列,且a1=2,設(shè)公差為d,代入a1+a2+a3=9,求出d,求出數(shù)列{an}的通項(xiàng)公式;
(2)求出數(shù)列{bn}的通項(xiàng)公式,利用錯(cuò)位相減法進(jìn)行求解
解答: 解:(1)數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=9,設(shè)出公差為d,
∴a1+a1+d+a1+2d=9,∴a1+d=3,可得2+d=3,解得d=1,
∴an=a1+(n-1)d=2+(n-1)×1=n+1;
(2)bn=an2an=(n+1)•2n+1,設(shè)其前n項(xiàng)和為Sn
∴Sn=2•22+3•23+…+(n+1)•2n+1
2Sn=2•23+3•24+…+(n+1)•2n+2
①-②可得-Sn=2•22+23+…+2n+1-(n+1)•2n+2,
∴Sn=n•2n+2
點(diǎn)評(píng):此題主要考查等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和的公式,第二問求前n項(xiàng)和,用到了錯(cuò)位相減法進(jìn)行求解,這也是常用的方法,此題是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊過點(diǎn)P(5m,-12m),(m<0),則2sinθ+cosθ的值是(  )
A、
19
13
B、
19
13
或-
19
13
C、-
19
13
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合I={1,2,3,…,n}(n∈N+),選擇I的兩個(gè)非空子集A和B,使B中最小的數(shù)大于A中最大的數(shù),記不同的選擇方法種數(shù)為an,顯然a1=0,a2=
C
2
2
=1
(1)求an
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,四邊形ABCD是等腰梯形,AD∥CD,∠DAB=60°
FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求證:平面ABCD⊥平面AED;
(2)直線AF與面BDF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,∠ACD=90°,∠BAC=∠CAD,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)求證:平面PAC⊥平面PCD;
(2)求證:CE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=
an
1+an

(1)求{an};
(2)記數(shù)列{an}的前n項(xiàng)和為Hn
(Ⅰ)當(dāng)n≥2時(shí),求n•(Hn-Hn-1);
(Ⅱ)證明:
1
1•
H
2
1
+
1
2•
H
2
2
+
1
3•
H
2
3
+…+
1
n•
H
2
n
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,點(diǎn)P在棱DF上.
(Ⅰ)求證:AD⊥BF:
(Ⅱ)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;
(Ⅲ)若二面角D-AP-C的余弦值為
6
3
,求PF的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)F是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn),MN為橢圓的長(zhǎng)軸,P為橢圓C上一點(diǎn),且
|PF|
∈[2,6].
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)Q(-8,0),
①求證:對(duì)于任意的割線QAB,恒有∠AFM=∠BFN;
②求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等邊△ABC的邊長(zhǎng)為2,平面內(nèi)一點(diǎn)M滿足
CM
=
1
3
CB
+
1
2
CA
,求
MA
MB

查看答案和解析>>

同步練習(xí)冊(cè)答案